To see the other types of publications on this topic, follow the link: Curvilinear elements.

Journal articles on the topic 'Curvilinear elements'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Curvilinear elements.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Heyliger, Paul R. "Ritz finite elements for curvilinear particles." Communications in Numerical Methods in Engineering 22, no. 5 (2005): 335–45. http://dx.doi.org/10.1002/cnm.813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dobrev, V. A., T. E. Ellis, Tz V. Kolev, and R. N. Rieben. "Curvilinear finite elements for Lagrangian hydrodynamics." International Journal for Numerical Methods in Fluids 65, no. 11-12 (2010): 1295–310. http://dx.doi.org/10.1002/fld.2366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anand, Akash, Jeffrey S. Ovall, Samuel E. Reynolds, and Steffen Weißer. "Trefftz Finite Elements on Curvilinear Polygons." SIAM Journal on Scientific Computing 42, no. 2 (2020): A1289—A1316. http://dx.doi.org/10.1137/19m1294046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martini, E., and S. Selleri. "Innovative class of curvilinear tetrahedral elements." Electronics Letters 37, no. 9 (2001): 557. http://dx.doi.org/10.1049/el:20010397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johnen, A., J. F. Remacle, and C. Geuzaine. "Geometrical validity of curvilinear finite elements." Journal of Computational Physics 233 (January 2013): 359–72. http://dx.doi.org/10.1016/j.jcp.2012.08.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aldakheel, Fadi, Blaž Hudobivnik, Edoardo Artioli, Lourenço Beirão da Veiga, and Peter Wriggers. "Curvilinear virtual elements for contact mechanics." Computer Methods in Applied Mechanics and Engineering 372 (December 2020): 113394. http://dx.doi.org/10.1016/j.cma.2020.113394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huber, C. J., W. Rieger, M. Haas, and W. M. Rucker. "A boundary element formulation using higher order curvilinear edge elements." IEEE Transactions on Magnetics 34, no. 5 (1998): 2441–44. http://dx.doi.org/10.1109/20.717561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Johnen, A., and C. Geuzaine. "Geometrical validity of curvilinear pyramidal finite elements." Journal of Computational Physics 299 (October 2015): 124–29. http://dx.doi.org/10.1016/j.jcp.2015.06.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malinin, M. Yu, and V. F. Snigirev. "Construction of curvilinear finite elements using vector splines." Journal of Soviet Mathematics 61, no. 5 (1992): 2390–95. http://dx.doi.org/10.1007/bf01097351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Artioli, E., L. Beirão da Veiga, and F. Dassi. "Curvilinear Virtual Elements for 2D solid mechanics applications." Computer Methods in Applied Mechanics and Engineering 359 (February 2020): 112667. http://dx.doi.org/10.1016/j.cma.2019.112667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sherwin, S. J., and J. Peiró. "Mesh generation in curvilinear domains using high-order elements." International Journal for Numerical Methods in Engineering 53, no. 1 (2001): 207–23. http://dx.doi.org/10.1002/nme.397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jirousek, J., and A. Venkatesh. "Implementation of curvilinear geometry intop-version HT plate elements." International Journal for Numerical Methods in Engineering 28, no. 2 (1989): 431–43. http://dx.doi.org/10.1002/nme.1620280212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dobrev, Veselin A., Truman E. Ellis, Tzanio V. Kolev, and Robert N. Rieben. "High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics." Computers & Fluids 83 (August 2013): 58–69. http://dx.doi.org/10.1016/j.compfluid.2012.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Steward, David R., Philippe Le Grand, Igor Janković, and Otto D. L. Strack. "Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2089 (2007): 223–48. http://dx.doi.org/10.1098/rspa.2007.0138.

Full text
Abstract:
A general framework for analytic evaluation of singular integral equations with a Cauchy kernel is developed for higher order line elements of curvilinear geometry. This extends existing theory which relies on numerical integration of Cauchy integrals since analytic evaluation is currently published only for straight lines, and circular and hyperbolic arcs. Analytic evaluation of Cauchy integrals along straight elements is presented to establish a context coalescing new developments within the existing body of knowledge. Curvilinear boundaries are partitioned into sectionally holomorphic eleme
APA, Harvard, Vancouver, ISO, and other styles
15

Yuan, Haobo, Zhijun Wang, Xiaojie Dang, and Nan Wang. "A Simple Transformation for Near-Singular Integrals on Curvilinear Elements." IEEE Transactions on Antennas and Propagation 63, no. 6 (2015): 2827–33. http://dx.doi.org/10.1109/tap.2015.2417897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Kun, and Jiming Song. "Singularity Subtraction for Nearly Singular Integrals on Curvilinear Triangular Elements." IEEE Antennas and Wireless Propagation Letters 14 (2015): 1435–38. http://dx.doi.org/10.1109/lawp.2015.2411224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dobrev, Veselin A., Tzanio V. Kolev, and Robert N. Rieben. "High order curvilinear finite elements for elastic–plastic Lagrangian dynamics." Journal of Computational Physics 257 (January 2014): 1062–80. http://dx.doi.org/10.1016/j.jcp.2013.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Qiu, Weifeng, and Leszek Demkowicz. "Mixed variable order h-finite element method for linear elasticity with weakly imposed symmetry. Curvilinear elements in 2D." Computational Methods in Applied Mathematics 11, no. 4 (2011): 510–39. http://dx.doi.org/10.2478/cmam-2011-0028.

Full text
Abstract:
AbstractWe continue our study on variable order Arnold-Falk-Winther elements reported in [W. Qiu, L. Demkowicz, Mixed hp-finite element method for linear elasticity with weakly imposed symmetry. Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3682-–3701] and [W. Qiu, L. Demkowicz, Mixed hp-finite element method for linear elasticity with weakly imposed symmetry: stability analysis. SIAM J. Numer. Anal., 49 (2011), pp. 619-–641] for 2D elasticity in context of parametric curvilinear elements. We present an asymptotic h-stability result.
APA, Harvard, Vancouver, ISO, and other styles
19

Huber, C. J., W. Rieger, M. Haas, and W. M. Rucker. "Application of curvilinear higher order edge elements to scattering problems using the boundary element method." IEEE Transactions on Magnetics 35, no. 3 (1999): 1510–13. http://dx.doi.org/10.1109/20.767254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Swartz, Julian P., and David Bruce Davidson. "Curvilinear Vector Finite Elements Using a Set of Hierarchical Basis Functions." IEEE Transactions on Antennas and Propagation 55, no. 2 (2007): 440–46. http://dx.doi.org/10.1109/tap.2006.888448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wilton, Donald R., Francesca Vipiana, and William A. Johnson. "Evaluating Singular, Near-Singular, and Non-Singular Integrals on Curvilinear Elements." Electromagnetics 34, no. 3-4 (2014): 307–27. http://dx.doi.org/10.1080/02726343.2014.877775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, J. S., and N. Ida. "Curvilinear and higher order 'edge' finite elements in electromagnetic field computation." IEEE Transactions on Magnetics 29, no. 2 (1993): 1491–94. http://dx.doi.org/10.1109/20.250685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ko, Heung Cho, Gunchul Shin, Shuodao Wang, et al. "Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements." Small 5, no. 23 (2009): 2703–9. http://dx.doi.org/10.1002/smll.200900934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ping, X. W., X. Y. Zhou, W. M. Yu, and T. J. Cui. "Fast electromagnetic simulation algorithm based on hierarchical and curvilinear finite elements." Microwave and Optical Technology Letters 53, no. 2 (2010): 324–31. http://dx.doi.org/10.1002/mop.25714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Beirão da Veiga, L., F. Brezzi, L. D. Marini, and A. Russo. "Polynomial preserving virtual elements with curved edges." Mathematical Models and Methods in Applied Sciences 30, no. 08 (2020): 1555–90. http://dx.doi.org/10.1142/s0218202520500311.

Full text
Abstract:
In this paper, we tackle the problem of constructing conforming Virtual Element spaces on polygons with curved edges. Unlike previous VEM approaches for curvilinear elements, the present construction ensures that the local VEM spaces contain all the polynomials of a given degree, thus providing the full satisfaction of the patch test. Moreover, unlike standard isoparametric FEM, this approach allows to deal with curved edges at an intermediate scale, between the small scale (treatable by homogenization) and the bigger one (where a finer mesh would make the curve flatter and flatter). The propo
APA, Harvard, Vancouver, ISO, and other styles
26

Baranovski, Sergei Vladislavovich, and Konstantin Valerievich Mikhailovskiy. "STRUCTURALLY OPTIMIZED POLYMER COMPOSITE WING DESIGN. PART 1. CURVILINEAR LOAD-BEARING ELEMENTS." TsAGI Science Journal 51, no. 2 (2020): 209–17. http://dx.doi.org/10.1615/tsagiscij.2020035007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Koshiba, M., and Y. Tsuji. "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems." Journal of Lightwave Technology 18, no. 5 (2000): 737–43. http://dx.doi.org/10.1109/50.842091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Glagolev, V. M., B. A. Trubnikov, and Yu N. Churin. "Curvilinear magnetic-well elements for the Drakon trap with circular magnetic surfaces." Nuclear Fusion 25, no. 8 (1985): 881–90. http://dx.doi.org/10.1088/0029-5515/25/8/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Goldstein, R. V., D. S. Lisovenko, A. V. Chentsov, and S. Yu Lavrentyev. "Experimental study of auxetic behavior of re-entrant honeycomb with curvilinear elements." Letters on Materials 7, no. 2 (2017): 81–84. http://dx.doi.org/10.22226/2410-3535-2017-2-81-84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SUGAHARA, Kyoichi, and Shinya HONDA. "Production and Evaluation of Curvilinear Fiber Composite Material approximated by linear Elements." Proceedings of the Materials and Mechanics Conference 2017 (2017): PS24. http://dx.doi.org/10.1299/jsmemm.2017.ps24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Johnen, A., C. Geuzaine, T. Toulorge, and J. F. Remacle. "Efficient Computation of the Minimum of Shape Quality Measures on Curvilinear Finite Elements." Procedia Engineering 163 (2016): 328–39. http://dx.doi.org/10.1016/j.proeng.2016.11.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Marais, N., and D. B. Davidson. "Numerical Evaluation of Hierarchical Vector Finite Elements on Curvilinear Domains in 2-D." IEEE Transactions on Antennas and Propagation 54, no. 2 (2006): 734–38. http://dx.doi.org/10.1109/tap.2005.863131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhu, J., Y. Q. Hu, R. S. Chen, and H. B. Zhu. "Calderon multiplicative preconditioner based on curvilinear elements for fast analysis of electromagnetic scattering." IET Microwaves, Antennas & Propagation 5, no. 1 (2011): 102. http://dx.doi.org/10.1049/iet-map.2009.0500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Voytovych, Мykola, Lev Velychko, Roman Lampika, and Khrystyna Lishchynska. "Calculation of strength of heated curvilinear bar structural elements of tubular cross-sections." Ukrainian journal of mechanical engineering and materials science 5, no. 2 (2019): 61–67. http://dx.doi.org/10.23939/ujmems2019.02.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ibragimov, Alexander, and Alexander Danilov. "Curvilinear steel elements in load-bearing structures of high-rise building spatial frames." E3S Web of Conferences 33 (2018): 02028. http://dx.doi.org/10.1051/e3sconf/20183302028.

Full text
Abstract:
The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free intern
APA, Harvard, Vancouver, ISO, and other styles
36

Cho, Maenghyo, and Hee Yuel Roh. "Development of geometrically exact new shell elements based on general curvilinear co-ordinates." International Journal for Numerical Methods in Engineering 56, no. 1 (2002): 81–115. http://dx.doi.org/10.1002/nme.546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Johnen, A., C. Geuzaine, T. Toulorge, and J. F. Remacle. "Efficient computation of the minimum of shape quality measures on curvilinear finite elements." Computer-Aided Design 103 (October 2018): 24–33. http://dx.doi.org/10.1016/j.cad.2018.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sygulski, R. "Application of curvilinear elements with internal collocation points to air-pneumatic structure interaction." Engineering Analysis with Boundary Elements 15, no. 1 (1995): 37–42. http://dx.doi.org/10.1016/0955-7997(95)00006-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Naozuka, Gustavo Taiji, Neyva Maria Lopes Romeiro, Alan Salvany Felinto, Paulo Laerte Natti, and Eliandro Rodrigues Cirilo. "Two-dimensional mesh generator and quality analysis of elements on the curvilinear coordinates system." Semina: Ciências Exatas e Tecnológicas 42, no. 1 (2021): 29. http://dx.doi.org/10.5433/1679-0375.2021v42n1p29.

Full text
Abstract:
Through mathematical models, it is possible to turn a problem of the physical domain to the computational domain. In this context, the paper presents a two-dimensional mesh generator in generalized coordinates, which uses the parametric linear spline method and partial differential equations. The generator is automated and able to treat real complex domains and, consequently, more realistic problems. However, there is a possibility that lower quality elements may be introduced into the computational mesh. Thus, metrics are investigated that identify elements considered to be of lower quality.
APA, Harvard, Vancouver, ISO, and other styles
40

Werner, Andrzej. "Evaluation of the degree of fitting of a curvilinear hole and stub machined on a CNC milling center." Mechanik 92, no. 12 (2019): 781–83. http://dx.doi.org/10.17814/mechanik.2019.12.108.

Full text
Abstract:
The method of evaluating the accuracy of fitting a curvilinear hole-stub pair is presented. The next stages of the process were presented, including: machining of elements, coordinate measurements of machined parts, analysis of measurement results. A method to improve the degree of fitting of the hole-stub pair is proposed.
APA, Harvard, Vancouver, ISO, and other styles
41

Czerech, Łukasz. "SELECTION OF OPTIMAL MACHINING STRATEGY IN THE MANUFACTURE OF ELEMENTS BOUNDED BY CURVILINEAR SURFACES." Acta Mechanica et Automatica 7, no. 1 (2013): 5–10. http://dx.doi.org/10.2478/ama-2013-0001.

Full text
Abstract:
Abstract Increasing machining accuracy realized on CNC machine tools causes that the more frequently surfaces machined with this technique are not subject to further finishing processing and directly affects on the final quality of the product. Achieving geometric accuracy established by the constructor is the problem that modern technologists and CAD/CAM programmers have to faced with. The paper presents the influence of toolpath tolerance and machining strategy available in CAD/CAM software on the constituting process of technological surface layer for elements limited with curvilinear surfa
APA, Harvard, Vancouver, ISO, and other styles
42

Urazgildeev, D. V. "Bending-torsion stability of rod curvilinear elements of steel arches beyond the elasticity limit." Вестник гражданских инженеров 16, no. 6 (2019): 123–29. http://dx.doi.org/10.23968/1999-5571-2019-16-5-123-129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Urazgildeev, D. V. "Bending-torsion stability of rod curvilinear elements of steel arches beyond the elasticity limit." Вестник гражданских инженеров 16, no. 6 (2019): 123–29. http://dx.doi.org/10.23968/1999-5571-2019-16-6-123-129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chao, J. C., Y. J. Liu, F. J. Rizzo, P. A. Martin, and L. Udpa. "Regularized integral equations and curvilinear boundary elements for electromagnetic wave scattering in three dimensions." IEEE Transactions on Antennas and Propagation 43, no. 12 (1995): 1416–22. http://dx.doi.org/10.1109/8.475931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Huber, C. J., W. Rieger, A. Buchau, and W. M. Rucker. "BEM‐computation of antenna near field reactions on conducting materials using curvilinear edge elements." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 18, no. 3 (1999): 348–60. http://dx.doi.org/10.1108/03321649910274919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Goldstein, R. V., D. S. Lisovenko, A. V. Chentsov, and S. Yu Lavrentyev. "Experimental study of defects influence on auxetic behavior of cellular structure with curvilinear elements." Letters on Materials 7, no. 4 (2017): 355–58. http://dx.doi.org/10.22226/2410-3535-2017-4-355-358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ainsworth, Mark, and Joe Coyle. "Conditioning of Hierarchic p-Version Nédélec Elements on Meshes of Curvilinear Quadrilaterals and Hexahedra." SIAM Journal on Numerical Analysis 41, no. 2 (2003): 731–50. http://dx.doi.org/10.1137/s003614290239590x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Moxey, David, Shankar P. Sastry, and Robert M. Kirby. "Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement." Journal of Scientific Computing 78, no. 2 (2018): 1045–62. http://dx.doi.org/10.1007/s10915-018-0795-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Клубничкин, Evgeniy Klubnichkin, Клубничкин, et al. "Model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine." Forestry Engineering Journal 5, no. 2 (2015): 166–76. http://dx.doi.org/10.12737/11991.

Full text
Abstract:
This paper offers a model of loading of the transmission elements at controlled curvilinear motion of the tracked timber harvesting machine. This model is based on evaluation of the effect of the external and internal factors on the loading of the tracked machine transmission. The main loads in the transmission result from the external action of the ground contacting area during the vehicle movement.
APA, Harvard, Vancouver, ISO, and other styles
50

Kresan, Tetiana, Serhii Pylypaka, Zynovii Ruzhylo, Ivan Rogovskii, and Oleksandra Trokhaniak. "EXTERNAL ROLLING OF A POLYGON ON CLOSED CURVILINEAR PROFILE." Acta Polytechnica 60, no. 4 (2020): 313–17. http://dx.doi.org/10.14311/ap.2020.60.0313.

Full text
Abstract:
The rolling of a flat figure in the form of an equilateral polygon on a curvilinear profile is considered. The profile is periodic. It is formed by a series connection of an arc of a symmetrical curve. The ends of the arc rely on a circle of a given radius. The equation of the curve, from which the curvilinear profile is constructed, is found. This is done provided that the centre of the polygon, when it rolls in profile, must also move in a circle. Rolling occurs in the absence of sliding. Therefore, the length of the arc of the curve is equal to the length of the side of the polygon. To find
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!