Academic literature on the topic 'Customer feedback'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Customer feedback.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Customer feedback"
Stoica, Eduard Alexandru, and Esra Kahya Özyirmidokuz. "Mining Customer Feedback Documents." International Journal of Knowledge Engineering-IACSIT 1, no. 1 (2015): 68–71. http://dx.doi.org/10.7763/ijke.2015.v1.12.
Full textAshurst, Adrian. "Customer Feedback." Nursing and Residential Care 2, no. 11 (November 2000): 554. http://dx.doi.org/10.12968/nrec.2000.2.11.7676.
Full textOmisakin, Olufemi Muibi, Chanaka Bandara, and Indrapriya Kularatne. "Designing a Customer Feedback Service Channel Through AI to Improve Customer Satisfaction in the Supermarket Industry." Journal of Information & Knowledge Management 19, no. 03 (July 17, 2020): 2050015. http://dx.doi.org/10.1142/s021964922050015x.
Full textKim, Shinyoung, Sunmee Choi, and Rohit Verma. "Providing feedback to service customers." Journal of Service Management 28, no. 2 (April 18, 2017): 389–416. http://dx.doi.org/10.1108/josm-11-2015-0368.
Full textRitva, Kosklin, Johanna Lammintakanen, and Tuula Kivinen. "Asiakaspalautetieto ja sen hyödyntäminen sairaalan johtamisessa." Hallinnon Tutkimus 39, no. 2 (September 13, 2020): 75–89. http://dx.doi.org/10.37450/ht.98082.
Full textMavis Dah, Helen, and Arnold Dumenya. "Investigating Customer Feedback Channels in the Hotel Industry: the Case of Ho – Ghana." European Scientific Journal, ESJ 12, no. 26 (September 30, 2016): 353. http://dx.doi.org/10.19044/esj.2016.v12n26p353.
Full textCeluch, Kevin, Nadine M. Robinson, and Anna M. Walsh. "A framework for encouraging retail customer feedback." Journal of Services Marketing 29, no. 4 (July 13, 2015): 280–92. http://dx.doi.org/10.1108/jsm-02-2014-0062.
Full textFlynn, Andrea Godfrey, Linda Court Salisbury, and Kathleen Seiders. "Tell Us Again, How Satisfied Are You? The Influence of Recurring Posttransaction Surveys on Purchase Behavior." Journal of Service Research 20, no. 3 (February 2, 2017): 292–305. http://dx.doi.org/10.1177/1094670517690026.
Full textSwathi, G., Sudha Rani Donepudi, and K. Ramash Kumar. "Personified Behavioural Demand Response Model for the Reduction of Peak Time Energy Consumption Coincidence of Domestic Sector with the Utility." WSEAS TRANSACTIONS ON POWER SYSTEMS 16 (December 31, 2021): 361–73. http://dx.doi.org/10.37394/232016.2021.16.36.
Full textEkawanto, Iwan, and Robert Kristaung. "PERBEDAAN EFEK TINGKAT PERLAKUAN ISTIMEWA YANG BERHUBUNGAN DENGAN PENDAPATAN: SEBUAH STUDI EMPIRIS PADA PELANGGAN TOKO SERBA ADA." Jurnal Manajemen dan Pemasaran Jasa 8, no. 2 (February 16, 2016): 165. http://dx.doi.org/10.25105/jmpj.v8i2.1598.
Full textDissertations / Theses on the topic "Customer feedback"
Way, Paula, and Madeleine Celander. "Online Customer Feedback." Thesis, Uppsala universitet, Företagsekonomiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156205.
Full textBegun, Syeda Sayeedunissa. "Techniques for analyzing customer feedback." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/3980.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering.
Dinh, Kevin Hoang. "Chatbot : The future of customer feedback." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42990.
Full textDetta är en studie om hur man konvertera en undersökning till en chattbot och sprida den till olika kommunikationskanaler för att samla återkoppling for att förbättra sig själv. Vad skulle vara det bekvämaste sättet att samla återkoppling? Våra dagliga liv blir mer och mer beroende av digitala enheter var dag. Ökningen av digitala enheter leder till ett större utbud av kommunikationskanaler. Är det inte då en bra möjlighet att utnyttja dessa kanaler för flera ändamål. Det här arbetet focuserar på chattbotar, undersökningssystem och deras förmåga att samla återkoppling från respondenter och använda den för att öka kvaliteten av varor, tjänster och kanske livet. Genom att använda chattbottens språkkunskap kan människor engagera sig med botten i en konversation och svara på undersökningsfrågor på ett annorlunda sätt. Genom att använda sig av något kallat Restful API kan man ta ut kvantitativ information för att analysera den för förbättringssyfte gällande produkter och tjänster. Trots att chattbotten inte är välgjord och fortfarande kräver mycket justeringar så har arbetet visat sig ha många möjligheter inom undersökningar, samla återkoppling och att analysera det. Detta kan vara en förbättring för forskning om chattbottar i framtiden eller ett nytt sätt att förbättra undersökningar.
Hensens, Wouter. "Hotel rating through guest feedback." Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1631.
Full textOja, P. (Paula). "Significance of customer feedback:an analysis of customer feedback data in a university hospital laboratory." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514262739.
Full textMcArdle, Meghan P. (Meghan Patricia) 1972. "Internet-based rapid customer feedback for design feature tradeoff analysis." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8990.
Full textIncludes bibliographical references (p. 86-88).
In an increasingly competitive consumer products market, companies are striving to create organizations, processes, and tools to reduce the product development cycle time. As product development teams strive to develop products faster and more effectively, incorporating quantitative market research or customer feedback into the design process in a time and cost effective manner becomes increasingly important. Over the last decade, the Internet has emerged as a new and exciting market research medium, which can provide product development teams with an opportunity to obtain rapid quantitative feedback from their customers before making key design decisions. This paper outlines a new methodology to incorporate customer feedback into the feature selection process of product development. This methodology was successfully employed in a new product development effort at Polaroid, and aided in the selection of 2 key product features. The research employed web-based conjoint analysis techniques and an innovative drag and drop technique, which allows customers to create their ideal product by selecting their optimal set of features at a given price. Leveraging the capabilities of the Internet to incorporate styled web design, animation, interactive activities and usability considerations into the development of an Internet-based, market research effort can reduce respondent fatigue and provide the respondent with a more enjoyable experience while collecting meaningful quantitative data on customer feature preferences.
by Meghan P. McArdle.
S.M.
Lin, Cynthia M. B. A. Sloan School of Management. "Methods for analyzing and incorporating customer feedback in automotive design and manufacturing." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99024.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 85-88).
One of the key focus areas of the General Motors (GM) Company's leadership is to collect, quickly analyze, and respond to customer feedback pertaining to product quality issues in newly built vehicles. This project is intended to complement the Quality team's initiative to develop a tool to combine data sources on product quality. Currently, the tool prioritizes issues based on the frequency of reported incidents, and does not integrate responses to open-ended survey questions. The objective of this project is to recommend methods in which customer satisfaction input can be used to improve product quality. We leveraged customer data and analytical tools to do three things. First, we identified sources of customer feedback across the organization to strengthen collaboration on listening to the customer. We then created a survey to assess the gap between customers and GM employees' definitions of terms such as quality, dependability, and advanced technology. Lastly, we used text analytics to provide structure to open-ended survey responses, which enabled us to identify concerns expressed by customers that were not otherwise captured using the current tool. The cross-functional approach enabled us to gather quantitative results to support observations and anecdotes of misalignments between consumers and GM employees define terms. Analysis shows that Dependability definitions are similar between employees and consumers, but that there is a significant gap for High Quality. Text analytics uncovered that customers were highly dissatisfied to discover that their vehicles did not have features they expected to be basic attributes.
by Cynthia Lin.
M.B.A.
S.M.
Winkler, Sven. "After-sales-Feedback mit Kundenkonferenzen : methodische Grundlagen und praktische Anwendung /." Wiesbaden : Dt. Univ.-Verl. [u.a.], 2001. http://www.gbv.de/du/services/toc/bs/32956353x.
Full textTsai, I. Hsuan. "Employees’ Responses to Positive Feedback from Customers and Managers." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3794.
Full textSkogsberg, Alexander, and Marja Wedberg. "Moving from customer feedback to organizational learning : A case study of a Swedish DSO." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264101.
Full textKund-orientering är en strategi som många organisationer använder sig av. Denna strategi refererar till organisationens förmåga att förstå kundernas upplevelse av den service som organisationen erbjuder. Detta kan ske genom att t.ex. samla in kundfeedback. Kundfeedback kan samlas in genom enkäter eller ges direkt till de anställda som möter kunderna. Processer för att samla in kundfeedback för kund-orienterade företag är generellt sätt välutvecklade. Tidigare forskning visar dock att processer för att användandet av denna värdefulla information inte sker på ett systematiskt sätt. I den här uppsatsen, undersöker vi hur ett svenskt elnätsbolag kan överföra kundfeedback internt för att möjliggöra organisationsinlärning. Den primära datainsamlingen i den här kvalitativa undersökningen erhålls i form av intervjuer från den empiriska kontexten samt från managementkonsulter med organisationsinlärning som deras expertområde. Resultaten från denna studie visar att det inte finns något universalmedel för hur kundfeedback ska presenteras och kommuniceras för att organisationen ska agera på det. Resultaten visar dock att en organisationskultur som inte stöttar de anställda till att dela sin kunskap hindrar kundfeedback från att effektivt spridas i organisationen. Kunskap från kunder måste värderas lika mycket som teknisk kunskap. Vidare visar undersökningen tydligt att en “codification-strategy” föredras. Denna strategi är passande för kundfeedback som erhålls direkt via enkäter, dock argumenterar vi i denna uppsats att en “personalization strategy” är mer adekvat för att kommunicerar indirekt feedback eftersom att denna feedback är svår att uttrycka i en kodad form. Denna uppsats är ett litet bidrag till den begränsade forskning som gjorts gällande hur en organisation ska agera på kundfeedback och överföra kunskap till den resterande organisationen för att gynna utveckling. Utöver detta bidrar denna uppsats till förståelse gällande utmaningar som ett reglerat monopol möter då de går mot en kundorienterad strategi.
Books on the topic "Customer feedback"
United States. Environmental Protection Agency. Hearing the voice of the customer: Customer feedback and customer satisfaction measurement guidelines. Washington, DC: U.S. Environmental Protection Agency, Office of Policy, 1999.
Find full textJill, Applegate, ed. Pay attention!: How to listen, respond, and profit from customer feedback. Hoboken, N.J: Wiley, 2010.
Find full textBarlow, Janelle. A complaint is a gift: Using customer feedback as a strategic tool. San Francisco: Berrett-Koehler Publishers, 1996.
Find full textBarlow, Janelle. A complaint is a gift: Using customer feedback as a strategic tool. San Francisco: Berrett-Koehler Publishers, 1996.
Find full text1942-, Møller Claus, ed. A complaint is a gift: Using customer feedback as a strategic tool. San Francisco: Berrett-Koehler Publishers, 1996.
Find full textBarlow, Janelle. A complaint is a gift: Using customer feedback as a strategic tool. San Francisco: Berrett-Koehler Publishers, 1996.
Find full textFox, G. T. Customer Reviews/Feedback Investigation of the consumer reaction to the Adidas "Feet you wear" product range. Oxford: Oxford Brookes University, 1998.
Find full textWater, Yorkshire. Clear: Feedback for Yorkshire Water customers. Bradford: Yorkshire Water, 2001.
Find full textGeary, John. Improving the quality of customer service with a relational database: The theoretical and practical issues involved in the design and implementation of a relational database in a manufacturing company : the database is to be used to record customer feedback and to assist the promotion of quality awareness among employees. [s.l: The Author], 1998.
Find full textEl dedo en la llaga: O las idas y venidas de pálpito. República de Chile: Editora Nueva Generación, 2000.
Find full textBook chapters on the topic "Customer feedback"
Moreira, Mario E. "Incorporating Customer Feedback." In The Agile Enterprise, 161–73. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2391-8_14.
Full textEusterbrock, Claudia. "Customer Feedback-System." In Steigerung der Dienstleistungsqualität mit Electronic-Banking, 193–225. Wiesbaden: Deutscher Universitätsverlag, 1999. http://dx.doi.org/10.1007/978-3-322-90478-2_5.
Full textGibson, Philip, and Francesca Di Dino. "Customer Feedback Systems Onboard Cruise Ships." In Cruise Tourism and Society, 101–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32992-0_8.
Full textRyynänen, Tapani, Iris Karvonen, Heidi Korhonen, and Kim Jansson. "Supporting Product-Service Development Through Customer Feedback." In Collaboration in a Data-Rich World, 138–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65151-4_13.
Full textOlsson, Helena Holmström, and Jan Bosch. "Towards Continuous Customer Validation: A Conceptual Model for Combining Qualitative Customer Feedback with Quantitative Customer Observation." In Lecture Notes in Business Information Processing, 154–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19593-3_13.
Full textMustansir, Amina, Khurram Shahzad, Syed Irtaza Muzaffar, and Kamran Malik. "Utilizing Customer Feedback for Business Process Performance Analysis." In Lecture Notes in Business Information Processing, 235–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99951-7_16.
Full textGangothri, V., S. Saranya, and D. Venkataraman. "Engender Product Ranking and Recommendation Using Customer Feedback." In Proceedings of the International Conference on Soft Computing Systems, 851–59. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2671-0_80.
Full textJoseph, George, and Vinu Varghese. "Analyzing Airbnb Customer Experience Feedback Using Text Mining." In Big Data and Innovation in Tourism, Travel, and Hospitality, 147–62. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6339-9_10.
Full textFugate, Brian S., and Beth R. Davis. "Feedback System Effectiveness on the MO-Performance Link." In Marketing, Technology and Customer Commitment in the New Economy, 283–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11779-9_103.
Full textMoghaddam, Samaneh. "Beyond Sentiment Analysis: Mining Defects and Improvements from Customer Feedback." In Lecture Notes in Computer Science, 400–410. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16354-3_44.
Full textConference papers on the topic "Customer feedback"
Gamon, Michael. "Sentiment classification on customer feedback data." In the 20th international conference. Morristown, NJ, USA: Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1220355.1220476.
Full textCulnan, M. J. "Designing information systems to support customer feedback." In the tenth international conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/75034.75060.
Full textOelke, Daniela, Ming Hao, Christian Rohrdantz, Daniel A. Keim, Umeshwar Dayal, Lars-Erik Haug, and Halldor Janetzko. "Visual opinion analysis of customer feedback data." In 2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009. http://dx.doi.org/10.1109/vast.2009.5333919.
Full textStelzer, Anselmo, Frank Englert, Stephan Horold, and Cindy Mayas. "Using customer feedback in public transportation systems." In 2014 International Conference on Advanced Logistics and Transport (ICALT). IEEE, 2014. http://dx.doi.org/10.1109/icadlt.2014.6864077.
Full textDeng, Xin. "Big data technology and ethics considerations in customer behavior and customer feedback mining." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258399.
Full textSmith, Ross. "Towards an ethical application of customer feedback data." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258404.
Full textKhriyenko, Oleksiy. "Customer Feedback System - Evolution towards Semantically-enhanced Systems." In 11th International Conference on Web Information Systems and Technologies. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005480505180525.
Full textJain, Praphula Kumar, Rajendra Pamula, Sarfraj Ansari, Dilip Sharma, and Lakshmibai Maddala. "Airline recommendation prediction using customer generated feedback data." In 2019 4th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2019. http://dx.doi.org/10.1109/iscon47742.2019.9036251.
Full textLuo, Zhiyi, Shanshan Huang, Frank F. Xu, Bill Yuchen Lin, Hanyuan Shi, and Kenny Zhu. "ExtRA: Extracting Prominent Review Aspects from Customer Feedback." In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/d18-1384.
Full textXia, Xin, David Lo, Jingfan Tang, and Shanping Li. "Customer satisfaction feedback in an IT outsourcing company." In EASE '15: 19th International Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2745802.2745834.
Full textReports on the topic "Customer feedback"
Aldrich, Susan. Netreflector InstantSurvey for Customer Feedback. Boston, MA: Patricia Seybold Group, March 2002. http://dx.doi.org/10.1571/pr3-28-02cc.
Full textMegas, Katerina N., Michael Fagan, and David Lemire. Workshop Summary Report for “Building the Federal Profile for IoT Device Cybersecurity” Virtual Workshop. National Institute of Standards and Technology, January 2021. http://dx.doi.org/10.6028/nist.ir.8322.
Full text