Academic literature on the topic 'CVD coatings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CVD coatings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CVD coatings"
Moulin, D., O. Raymond, P. Chevrier, Paul Lipiński, and Thierry Barre. "CVD Diamond Coatings for Machining." Materials Science Forum 526 (October 2006): 55–60. http://dx.doi.org/10.4028/www.scientific.net/msf.526.55.
Full textHaubner, R., E. Rauchenwald, M. Lessiak, R. Pitonak, and R. Weissenbacher. "Novel High-Performance CVD Coatings for Machining Applications." Powder Metallurgy Progress 18, no. 2 (November 1, 2018): 128–38. http://dx.doi.org/10.1515/pmp-2018-0015.
Full textLi, Xiaodong, and Bharat Bhushan. "Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings." Journal of Materials Research 14, no. 6 (June 1999): 2328–37. http://dx.doi.org/10.1557/jmr.1999.0309.
Full textKukla, Dominik, Mateusz Kopec, Zbigniew L. Kowalewski, Denis J. Politis, Stanisław Jóźwiak, and Cezary Senderowski. "Thermal Barrier Stability and Wear Behavior of CVD Deposited Aluminide Coatings for MAR 247 Nickel Superalloy." Materials 13, no. 17 (September 1, 2020): 3863. http://dx.doi.org/10.3390/ma13173863.
Full textRomanowska, Jolanta, Maryana Zagula-Yavorska, Marek Góral, and Jan Sieniawski. "Zirconium Modified Aluminide Coatings Obtained by the CVD Method." Solid State Phenomena 227 (January 2015): 174–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.174.
Full textGodse, R. V., and A. T. Santhanam. "Composite CVD + PVD coatings." Materials Science and Engineering: A 209, no. 1-2 (May 1996): 384–88. http://dx.doi.org/10.1016/0921-5093(95)10138-1.
Full textAlshmri, F. "Metallic Coatings: Al-Zn Alloys." Advanced Materials Research 915-916 (April 2014): 608–11. http://dx.doi.org/10.4028/www.scientific.net/amr.915-916.608.
Full textYavorska, M., Jan Sieniawski, Ryszard Filip, and Tadeusz Gancarczyk. "Microstructure Investigation of Aluminide Coatings after Platinum Modification Deposited by CVD Method on Inconel 713 LC Ni-Base Superalloy." Advanced Materials Research 409 (November 2011): 883–88. http://dx.doi.org/10.4028/www.scientific.net/amr.409.883.
Full textWu, Liying, Lianchang Qiu, Yong Du, Fangfang Zeng, Qiang Lu, Zhuopeng Tan, Lei Yin, Liyong Chen, and Jifei Zhu. "Structure and Mechanical Properties of PVD and CVD TiAlSiN Coatings Deposited on Cemented Carbide." Crystals 11, no. 6 (May 25, 2021): 598. http://dx.doi.org/10.3390/cryst11060598.
Full textGoto, Takashi. "Laser CVD Process for High Speed Deposition of YSZ Films." Materials Science Forum 475-479 (January 2005): 1213–18. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1213.
Full textDissertations / Theses on the topic "CVD coatings"
Wheeler, David William. "Solid particle erosion of CVD diamond coatings." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342748.
Full textSalgueiredo, Ermelinda da Conceição Portela. "Multilayered micro/nanocrystalline CVD diamond coatings for biotribology." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13465.
Full textIn the present work multilayered micro/nanocrystalline (MCD/NCD) diamond coatings were developed by Hot Filament Chemical Vapour Deposition (HFCVD). The aim was to minimize the surface roughness with a top NCD layer, to maximize adhesion onto the Si3N4 ceramic substrates with a starting MCD coating and to improve the mechanical resistance by the presence of MCD/NCD interfaces in these composite coatings. This set of features assures high wear resistance and low friction coefficients which, combined to diamond biocompatibility, set this material as ideal for biotribological applications. The deposition parameters of MCD were optimized using the Taguchi method, and two varieties of NCD were used: NCD-1, grown in a methane rich gas phase, and NCD-2 where a third gas, Argon, was added to the gas mixture. The best combination of surface pre-treatments in the Si3N4 substrates is obtained by polishing the substrates with a 15 μm diamond slurry, further dry etching with CF4 plasma for 10 minutes and final ultrasonic seeding in a diamond powder suspension in ethanol for 1 hour. The interfaces of the multilayered CVD diamond films were characterized with high detail using HRTEM, STEM-EDX and EELS. The results show that at the transition from MCD to NCD a thin precursor graphitic film is formed. On the contrary, the transition of the NCD to MCD grade is free of carbon structures other than diamond, as a result of the richer atomic hydrogen content and of the higher substrate temperature for MCD deposition. At those transitions, WC nanoparticles were found due to contamination from the filament, being also present at the first interface of the MCD layer with the silicon nitride substrate. In order to study the adhesion and mechanical resistance of the diamond coatings, indentation and particle jet blasting tests were conducted, as well as tribological experiments with homologous pairs. Indentation tests proved the superior behaviour of the multilayered coatings that attained a load of 800 N without delamination, when compared to the mono and bilayered ones. The multilayered diamond coatings also reveal the best solid particle erosion resistance, due to the MCD/NCD interfaces that act as crack deflectors. These results were confirmed by an analytical model on the stress field distribution based on the von Mises criterion. Regarding the tribological testing under dry sliding, multilayered coatings also exhibit the highest critical load values (200N for Multilayers with NCD-2). Low friction coefficient values in the range μ=0.02- 0.09 and wear coefficient values in the order of ~10-7 mm3 N-1 m-1 were obtained for the ball and flat specimens indicating a mild wear regime. Under lubrication with physiological fluids (HBSS e FBS), lower wear coefficient values ~10-9-10-8 mm3 N-1 m-1) were achieved, governed by the initial surface roughness and the effective contact pressure.
No presente trabalho desenvolveram-se revestimentos de diamante micro/nanocristalino (MCD/NCD) em multicamadas obtidos por deposição química em fase vapor (CVD) assistida por filamento quente. Pretendeu-se minimizar a rugosidade através de um camada superficial de NCD, maximizar a adesão com um filme inicial de MCD sobre substratos cerâmicos de nitreto de silício (Si3N4) e incrementar a resistência mecânica pela presença de interfaces MCD/NCD nestes revestimentos compósitos. Este conjunto de características garante elevada resistência ao desgaste e baixo coeficiente de atrito, o que somado à biocompatibilidade do diamante, configuram este material como ideal para aplicações em biotribologia. Os parâmetros de deposição do MCD foram otimizados usando o método de Taguchi e utilizaram-se duas variedades de NCD: NCD-1 crescido numa atmosfera com sobressaturação de metano e NCD-2 crescido na presença de árgon. A melhor combinação de pré-tratamentos nos substratos de Si3N4 consiste num polimento com suspensão de diamante (15 μm), seguido de ataque por plasma de CF4 durante 10 minutos e riscagem em suspensão de pó de diamante em etanol durante 1 hora. As interfaces das multicamadas de diamante foram caracterizadas em detalhe por HRTEM, STEM-EDX e EELS. Os resultados mostram que na transição de diamante MCD para NCD ocorre a formação de um filme fino de carbono amorfo, inexistente na transição de NCD para MCD, como resultado da maior percentagem de hidrogénio atómico na mistura de gases e do incremento da temperatura do substrato para a deposição de MCD. Uma característica comum nas interfaces nos dois tipos de NCD é a presença de partículas esféricas de carboneto de tungsténio, devido à contaminação pelos filamentos, estando também presentes na interface entre a camada de MCD e o substrato de nitreto de silício. A adesão e resistência mecânica dos filmes de diamante foram avaliadas por ensaios de indentação, erosão com partículas de carboneto de silício e ensaios tribológicos em movimento recíproco, com pares próprios. Por indentação verificou-se que as multicamadas suportam uma carga de 800N, sem delaminação, valor superior ao atingido pelas mono- e bicamadas. Nos ensaios de erosão, as multicamadas apresentaram igualmente melhor comportamento, devido à ação das interfaces MCD/NCD como defletoras das fissuras, sendo estes resultados confirmados por uma análise de distribuição de tensões de von Mises. As multicamadas apresentam também as cargas críticas de delaminação máximas nos ensaios tribológicos a seco (200 N para multicamadas com NCD-2). Os valores do coeficiente de atrito variam na gama μ=0.02-0.09, para coeficientes de desgaste ~10-7 mm3 N-1 m-1 para a esfera e placa, indicando um regime de desgaste moderado. Sob lubrificação de líquidos fisiológicos (HBSS e FBS) descem para ~10-9-10-8 mm3 N-1 m-1, valores determinados pela rugosidade de partida e pelo regime de pressão de contato efetiva.
Bojestig, Eric. "Adhesion of CVD coatings on new cemeted carbides." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298648.
Full textBloyce, David Michael. "Microstructure - property relations in CVD deposited tin dioxide coatings on float glass." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267180.
Full textShabani, Mohammadmehdi. "Tribosystems based on multilayered micro/nanocrystalline CVD diamond coatings." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/16855.
Full textA combinação das características do diamante microcristalino (MCD) e nanocristalino (NCD), tais como elevada adesão do MCD e a baixa rugosidade superficial e baixo coeficiente de atrito do NCD, é ideal para aplicações tribológicas exigentes. Deste modo, o presente trabalho centrou–se no desenvolvimento de revestimentos em multicamada MCD/NCD. Filmes com dez camadas foram depositados em amostras de cerâmicos de Si3N4 pela técnica de deposição química em fase vapor assistida por filamento quente (HFCVD). A microestrutura, qualidade do diamante e adesão foram investigadas usando técnicas como SEM, AFM, espectroscopia Raman, DRX, indentação Brale e perfilometria ótica 3D. Diversas geometrias para aplicações distintas foram revestidas: discos e esferas para testes tribológicos à escala laboratorial, e para testes em serviço, anéis de empanques mecânicos e pastilhas de corte para torneamento. Nos ensaios tribológicos esfera–sobre–plano em movimento recíproco, sob 10–90% de humidade relativa (RH), os valores médios dos coeficientes de atrito máximo e em estado estacionário são de 0,32 e 0,09, respetivamente. Em relação aos coeficientes de desgaste, observou–se um valor mínimo de cerca de 5,2×10–8 mm3N–1m–1 para valores intermédios de 20–25% de RH. A humidade relativa tem um forte efeito sobre o valor da carga crítica que triplica a partir de 40 N a 10% RH para 120 N a 90% de RH. No intervalo de temperaturas 50–100 ° C, as cargas críticas são semelhantes às obtidas em condições de baixa RH (~10–25%). A vida útil das ferramentas com revestimento de dez camadas alternadas MCD/NCD e 24 μm de espessura total no torneamento de um compósito de matriz metálica Al– 15 vol% Al2O3 (Al–MMC) é melhor do que a maioria das ferramentas de diamante CVD encontradas na literatura, e semelhante à maioria das ferramentas de diamante policristalino (PCD). A formação de cratera ocorre por desgaste sucessivo das várias camadas, atrasando a delaminação total do revestimento de diamante do substrato, ao contrário do que acontece com os revestimentos monocamada. Os anéis de empanque testados com biodiesel apresentaram coeficientes de desgaste (4,1x10–10 mm3N–1m–1) duas ordens de grandeza menores do que em ensaios esfera–sobre–plano em movimento recíproco (k = 5,0x10–8 mm3N–1m–1), mas não foi possível obter vedação completa devido a sobreaquecimento do fluido. Esta condição foi obtida com água sob pressão, para condições P.V na gama 0,72–5,3 MPa.ms–1. Um coeficiente de atrito em estado estacionário de ~ 0,04 e um valor de coeficiente de desgaste de 6,0x10–10 mm3N–1m–1, característico de um regime desgaste ultra–suave, revelam o alto desempenho deste tribossistema.
The combination of the characteristics of microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) varieties, such as high adhesion of MCD and low surface roughness and low friction coefficient of NCD, is ideal for highly–demanding tribological applications. The main objective of this study was thus the development of multilayered MCD/NCD coatings for such purpose. Single layer and tenfold multilayer coatings were grown onto Si3N4 ceramic samples by the hot–filament CVD (HFCVD) process and their microstructure, diamond quality and adhesion were investigated using SEM, AFM, Raman spectroscopy, XRD, Brale indentation and 3D optical profilometry. Several geometries for distinct applications were then coated: discs and balls for lab–scale tribological testing, mechanical seal rings and cutting inserts for in–service testing. For the ball–on–flat reciprocating tests in the 10–90% relative humidity (RH) range the average values of the maximum and steady–state friction coefficients are 0.32 and 0.09, respectively. Regarding the wear coefficient of the discs, a valley–shaped evolution is observed within the same RH range, with a minimum of about 5.2×10–8 mm3N–1m–1. Humidity has a strong effect on the value of the critical load that triples from 40 N at 10% RH to 120 N at 90% RH. In the 50–100 °C range the critical loads are similar to those attained under dry conditions ( 25% RH). The tool life of a 24 μm thick tenfold multilayered MCD/NCD coated insert in the turning of an Al–15 vol.% Al2O3 metal matrix composite (Al–MMC) is better than most reported CVD diamond systems, behaving as well as most PCD tools. Crater wear occurs by successive wear of the layers, delaying total delamination of the diamond coating from the substrate, unlike what would happen with monolayer coatings. Under biodiesel lubrication seal rings present wear coefficients (4.1x10–10 mm3N–1m–1) two orders of magnitude lower than the reciprocating sliding ball–on–flat experiments (k = 5.0x10–8 mm3N–1m–1), but no full sealing was possible due to overheating of the fluid. This condition was only attained with pressurized water, for P.V conditions in the range 0.72–5.3 MPa.ms–1. A steady state friction coefficient value of ~0.04 and a wear coefficient value of 6.0x10–10 mm3N–1m–1, characteristic of an ultra–mild wear regime, reveal the high performance of this tribosystem.
Ryan, David J. "High temperature degradation of combustion CVD coated thermal barrier coatings." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/18909.
Full textPapazoglou, Despina. "CVD of ceramic coatings in a hot wall and fluidised bed reactor." Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09AS/09asp213.pdf.
Full textFallqvist, Mikael. "Microstructural, Mechanical and Tribological Characterisation of CVD and PVD Coatings for Metal Cutting Applications." Doctoral thesis, Uppsala universitet, Tillämpad materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-172364.
Full textHendrick, Michelle Renee. "The effects of combustion CVD-applied alumina coatings on the high temperature oxidation of a Ni-Cr alloy." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/19635.
Full textLongpradit, Panchan. "Effect of substrate pretreatment on CVD diamond coated cemented tungsten carbide tools for wood cutting application." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326525.
Full textBooks on the topic "CVD coatings"
Prange, Robert. Abscheidung metastabiler Ti₁₋xAlxN-Schichten nach dem plasmagestützten CVD-Verfahren. Düsseldorf: VDI Verlag, 2000.
Find full textMiyoshi, Kazuhisa. CVD diamond, DLC, and c-BN coatings for solid film lubrication. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textMiyoshi, Kazuhisa. CVD diamond, DLC, and c-BN coatings for solid film lubrication. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textPulker, Hans K. Pulker: Wear & Corrosion Resistant Coatings by CVD & Pvd. Ellis Horwood, 1989.
Find full text1933-, Pulker H. K., and Bergmann E, eds. Wear and corrosion resistant coatings by CVD and PVD. Chichester: E. Horwood, 1989.
Find full textCVD diamond, DLC, and c-BN coatings for solid film lubrication. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textTribologicai characteristics and applications of superhand coatings: CVD diamond, DLC, and c-BN. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textCollingham, Mark. Effect of recycling on axial distribution coating thickness in a low pressure CVD reactor. 1986.
Find full textBook chapters on the topic "CVD coatings"
Deng, Xiaopei, Kenneth C. K. Cheng, and Joerg Lahann. "Multifunctional Reactive Polymer Coatings." In CVD Polymers, 199–218. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690275.ch9.
Full textO'Shaughnessy, W. Shannan. "Commercialization of CVD Polymer Coatings." In CVD Polymers, 415–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690275.ch19.
Full textMatthews, Allan, and Kenneth Holmberg. "PVD and CVD Coatings." In Encyclopedia of Tribology, 2705–11. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_724.
Full textMoulin, D., O. Raymond, P. Chevrier, P. Lipinski, and Thierry Barre. "CVD Diamond Coatings for Machining." In Materials Science Forum, 55–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-417-0.55.
Full textZemskova, S. M., J. A. Haynes, and K. M. Cooley. "Protective CVD Mullite Coatings with Controlled Composition and Microstructure." In Elevated Temperature Coatings, 317–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch24.
Full textWahl, G. "CVD Processes to Enhance Corrosion and Wear Protection." In Protective Coatings and Thin Films, 49–75. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5644-8_6.
Full textVarlamov, A. G. "CVD-Silicon Carbonitride Coatings: Synthesis and Some Characteristics." In Protective Coatings and Thin Films, 89–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5644-8_8.
Full textKim, G. Y., J. D. Meyer, L. M. He, W. Y. Lee, and J. A. Haynes. "Synthesis of Hf-Doped CVD β-NiAl Coating by Continuous Doping Procedure." In Elevated Temperature Coatings, 143–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch11.
Full textAlexenko, A. E., and B. V. Spitsyn. "Some Properties of CVD-Diamond Semiconducting Structures." In Diamond and Diamond-like Films and Coatings, 789–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5967-8_58.
Full textHaynes, J. A., M. J. Lance, B. A. Pint, and I. G. Wright. "Characterization of Commercial EB-PVD TBC Systems with CVD (Ni,Pt)Al Bond Coatings." In Elevated Temperature Coatings, 29–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch3.
Full textConference papers on the topic "CVD coatings"
Varlamov, Alexey G. "Structured CVD-silicon carbonitride coatings." In Microelectronic Manufacturing 1996, edited by Ih-Chin Chen, Nobuo Sasaki, Divyesh N. Patel, and Girish A. Dixit. SPIE, 1996. http://dx.doi.org/10.1117/12.250887.
Full textZabeida, Oleg, Richard Vernhes, Thomas Poirié, Sebastien Chiarotto, Karin Scherer, Thomas Schmitt, Viktor Marushka, Jolanta E. Klemberg-Sapieha, and Ludvik Martinu. "Hybrid Organic-Inorganic Optical Films Deposited by Ion Beam Assisted CVD." In Optical Interference Coatings. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/oic.2013.tha.4.
Full textMollart, Tim P., Keith L. Lewis, Christopher J. H. Wort, and Charles S. J. Pickles. "Coatings technology for CVD diamond optics." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Randal W. Tustison. SPIE, 2001. http://dx.doi.org/10.1117/12.439176.
Full textWarnes, Bruce Michael. "Improved Pt Aluminide Coatings Using CVD and Novel Platinum Electroplating." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-391.
Full textTan, Xiaonan, Jacek Wojcik, Haiqiang Zhang, and Peter Mascher. "SiO^x, SiN^x, SiN^xO^y Deposited by ICP-CVD System With Optimized Uniformity for Optical Coatings." In Optical Interference Coatings. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/oic.2007.mb4.
Full textPodob, Mark. "Chemical Vapor Deposition (CVD) Coatings for Protection of Jet Engine Components." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-375.
Full textLiburdi, J., P. Lowden, and V. Moravek. "A Low Temperature CVD Process for Aluminum and Aluminide Coatings." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0330.
Full textPaquet, V., H. W. Etzkorn, R. T. Kersten, J. L. Emmet, J. H. Campbell, R. M. Brusasco, and F. Rainer. "Laser Damage Resistant Coatings By Plasma-Impulse-CVD." In 1989 Intl Congress on Optical Science and Engineering, edited by Theo T. Tschudi. SPIE, 1990. http://dx.doi.org/10.1117/12.961353.
Full textKlug, Werner, Roland Schneider, and Alfons Zoeller. "Plasma-enhanced CVD hard coatings for opthalmic optics." In San Dieg - DL Tentative, edited by Richard I. Seddon. SPIE, 1990. http://dx.doi.org/10.1117/12.22376.
Full textTaylor, Craig A., and Wilson K. Chiu. "Characterization of carbon CVD coatings near atmospheric deposition pressure." In Photonics Fabrication Europe, edited by Hans G. Limberger and M. John Matthewson. SPIE, 2003. http://dx.doi.org/10.1117/12.468291.
Full textReports on the topic "CVD coatings"
Sarin, V. K., and S. Varadarajan. Development of CVD Mullite Coatings for SiC Fibers. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/755649.
Full textVanier, P. E., R. E. Barletta, J. Svandrlik, and J. Adams. Tests of Hercules/Ultramet CVD coatings in hot hydrogen. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7001818.
Full textVanier, P. E., R. E. Barletta, J. Svandrlik, and J. Adams. Tests of Hercules/Ultramet CVD coatings in hot hydrogen. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10116356.
Full textSarin, V., R. Mulpuri, and M. Auger. Corrosion protection of SiC-based ceramics with CVD mullite coatings. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/256785.
Full textAdams, J. W., R. E. Barletta, J. Svandrlik, and P. E. Vanier. Performance of CVR coatings for PBR fuels. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10115283.
Full textHendrick, Michelle. Low-Cost Protective Layer Coatings on Thermal Barrier Coatings via CCVD. Final Report. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/821712.
Full textBeitleman, Alfred D. Cape Cod Railroad Bridge Coating Field Test Results. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada371715.
Full textBattaglia, Francine. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/942124.
Full textGray, Matthew H. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1121487.
Full textGray, Matthew. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225965.
Full text