Academic literature on the topic 'Cyanide ligand'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cyanide ligand.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cyanide ligand"

1

Qin, Ying-Lian, Hong Sun, Yan Jing, Xiu-Ping Jiang, Gao-Feng Wang, and Jian-Fang Qin. "A novel three-dimensional copper(I) cyanide coordination polymer constructed from various bridging ligands: synthesis, crystal structure and characterization." Acta Crystallographica Section C Structural Chemistry 75, no. 11 (October 23, 2019): 1517–23. http://dx.doi.org/10.1107/s2053229619014025.

Full text
Abstract:
The cyanide ligand can act as a strong σ-donor and an effective π-electron acceptor that exhibits versatile bridging abilities, such as terminal, μ2-C:N, μ3-C:C:N and μ4-C:C:N:N modes. These ligands play a key role in the formation of various copper(I) cyanide systems, including one-dimensional (1D) chains, two-dimensional (2D) layers and three-dimensional (3D) frameworks. According to the literature, numerous coordination polymers based on terminal, μ2-C:N and μ3-C,C,N bridging modes have been documented so far. However, systems based on the μ4-C:C:N:N bridging mode are relatively rare. In this work, a novel cyanide-bridged 3D CuI coordination framework, namely poly[(μ2-2,2′-biimidazole-κ2 N 3:N 3′)(μ4-cyanido-κ4 C:C:N:N)(μ2-cyanido-κ2 C:N)dicopper(I)], [Cu2(CN)2(C6H6N4)] n , (I), was synthesized hydrothermally by reaction of environmentally friendly K3[Fe(CN)6], CuCl2·2H2O and 2,2′-biimidazole (H2biim). It should be noted that cyanide ligands may act as reducing agents to reduce CuII to CuI under hydrothermal conditions. Compound (I) contains diverse types of bridging ligands, such as μ4-C:C:N:N-cyanide, μ2-C:N-cyanide and μ2-biimidazole. Interestingly, the [Cu2] dimers are bridged by rare μ4-C:C:N:N-mode cyanide ligands giving rise to the first example of a 1D dimeric {[Cu2(μ4-C:C:N:N)] n+} n infinite chain. Furthermore, adjacent dimer-based chains are linked by μ2-C:N bridging cyanide ligands, generating a neutral 2D wave-like (4,4) layer structure. Finally, the 2D layers are joined together via bidentate bridging H2biim to create a 3D cuprous cyanide network. This arrangement leads to a systematic variation in dimensionality from 1D chain→2D sheet→3D framework by different types of bridging ligands. Compound (I) was further characterized by thermal analysis, solid-state UV–Vis diffuse-reflectance and photoluminescence studies. The solid-state UV–Vis diffuse-reflectance spectra show that compound (I) is a wide-gap semiconductor with band gaps of 3.18 eV. The photoluminescence study shows a strong blue–green photoluminescence at room temperature, which may be associated with metal-to-ligand charge transfer.
APA, Harvard, Vancouver, ISO, and other styles
2

Piromchom, Jureepan, Jintana Othong, Jaursup Boonmak, Ilpo Mutikainen, and Sujittra Youngme. "A novel one-dimensional metal–organic framework with a μ-cyanido-argentate group:catena-poly[[(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′)silver(I)]-μ-cyanido-κ2N:C]." Acta Crystallographica Section C Structural Chemistry 71, no. 12 (November 7, 2015): 1057–61. http://dx.doi.org/10.1107/s2053229615020288.

Full text
Abstract:
The design and synthesis of metal coordination and supramolecular frameworks containingN-donor ligands and dicyanidoargentate units is of interest due to their potential applications in the fields of molecular magnetism, catalysis, nonlinear optics and luminescence. In the design and synthesis of extended frameworks, supramolecular interactions, such as hydrogen bonding, π–π stacking and van der Waals interactions, have been exploited for molecular recognition associated with biological activity and for the engineering of molecular solids.The title compound, [Ag(CN)(C12H12N2)]n, crystallizes with the AgIcation on a twofold axis, half a cyanide ligand disordered about a centre of inversion and half a twofold-symmetric 5,5′-dimethyl-2,2′-bipyridine (5,5′-dmbpy) ligand in the asymmetric unit. Each AgIcation exhibits a distorted tetrahedral geometry; the coordination environment comprises one C(N) atom and one N(C) atom from substitutionally disordered cyanide bridging ligands, and two N atoms from a bidentate chelating 5,5′-dmbpy ligand. The cyanide ligand links adjacent AgIcations to generate a one-dimensional zigzag chain. These chains are linked togetherviaweak nonclassical intermolecular interactions, generating a two-dimensional supramolecular network.
APA, Harvard, Vancouver, ISO, and other styles
3

Guan, Guizhi, Yuxiang Gao, Lixia Wang, and Tao Wang. "Bis(cyanido-κC)bis(1,10-phenanthroline-κ2 N,N′)chromium(III) bis(azido-κN)[N,N′-(o-phenylene)bis(pyridine-2-carboxamide)-κ4 N]chromate(III) monohydrate." Acta Crystallographica Section E Structure Reports Online 63, no. 11 (October 17, 2007): m2750. http://dx.doi.org/10.1107/s1600536807049872.

Full text
Abstract:
The title compound, [Cr(CN)2(C12H8N2)2][Cr(N3)2(C18H12N4O2)]·H2O, contains [CrIII(CN)2(phen)2]+ cations (phen is 1,10-phenanthroline) and [CrIII(N3)2(bpb)]− anions [bpb is 1,2-bis(pyridine-2-carboxamido)benzene or N,N′-(o-phenylene)bis(pyridine-2-carboxamide)]. In the cations, the CrIII atom is coordinated by two phen ligands and two cyanide ligands in a distorted octahedral geometry. In the anions, the CrIII atom is coordinated by the tetradentate bpb ligand and two azide ions, forming a distorted octahedral geometry. There is one solvent water molecule per cation–anion pair, which forms hydrogen bonds to one carbonyl group of the bpb ligand and to the terminal N atom of one cyanide ligand.
APA, Harvard, Vancouver, ISO, and other styles
4

Kettle, Sidney F. A., Gian Luca Aschero, Eliano Diana, Rosanna Rossetti, and Pier Luigi Stanghellini. "The Vibrational Spectra of the Cyanide Ligand Revisited: Terminal Cyanides." Inorganic Chemistry 45, no. 13 (June 2006): 4928–37. http://dx.doi.org/10.1021/ic0514041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kettle, Sidney F. A., Eliano Diana, Enrico Boccaleri, and Pier Luigi Stanghellini. "The Vibrational Spectra of the Cyanide Ligand Revisited. Bridging Cyanides." Inorganic Chemistry 46, no. 7 (April 2007): 2409–16. http://dx.doi.org/10.1021/ic0610482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blackmore, R. S., P. M. A. Gadsby, C. Greenwood, and A. J. Thomson. "The effect of haem ligands on the redox states of the hexa-haem nitrite reductase from Wolinella succinogenes." Biochemical Journal 271, no. 1 (October 1, 1990): 253–57. http://dx.doi.org/10.1042/bj2710253.

Full text
Abstract:
The nitrite reductase of Wolinella succinogenes containing six covalently bound haem groups has one haem group that will not reduce fully in the presence of excess Na2S2O4. The effect of the extrinsic ligands CO and cyanide on the redox state of this haem was studied by e.p.r. and magnetic c.d. spectroscopy. It was found that both ligands increased the extent of reduction of this haem group, and that in the case of CO binding the level of reduction was correlated with the extent of CO saturation of the enzyme. Stopped-flow studies of the effect of cyanide binding on the rate of dithionite reduction showed that the rate of reduction of the ligand-binding site was increased in the presence of cyanide. This suggests that reduction of the haem groups at the active site is thermodynamically unfavourable in the absence of an extrinsic ligand. The role of the ‘non-reducing’ haem group and the effect of ligands on this centre and on the rate of reduction are discussed in relation to the reduction of nitrite by this enzyme.
APA, Harvard, Vancouver, ISO, and other styles
7

Kettle, Sidney F. A., Eliano Diana, Edoardo M. C. Marchese, Enrico Boccaleri, Gianluca Croce, Tianlu Sheng, and Pier Luigi Stanghellini. "The Vibrational Spectra of the Cyanide Ligand Revisited: Double Bridging Cyanides." European Journal of Inorganic Chemistry 2010, no. 25 (July 13, 2010): 3920–29. http://dx.doi.org/10.1002/ejic.201000265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Setifi, Zouaoui, Sylvain Bernès, Olivier Pérez, Fatima Setifi, and Djamil-Azzeddine Rouag. "Crystal structure of μ-cyanido-1:2κ2N:C-dicyanido-1κC,2κC-bis(quinolin-8-amine-1κ2N,N′)-2-silver(I)-1-silver(II): rare occurrence of a mixed-valence AgI,IIcompound." Acta Crystallographica Section E Crystallographic Communications 71, no. 6 (May 23, 2015): 698–701. http://dx.doi.org/10.1107/s2056989015009664.

Full text
Abstract:
The title dinuclear complex, [Ag2(CN)3(C9H8N2)2], may be considered as an AgIIcompound with the corresponding metal site coordinated by two bidentate quinolin-8-amine molecules, one cyanide group and one dicyanidoargentate(I) anion, [Ag(CN)2]−. Since this latter ligand contains an AgIatom, the complex should be a class 1 or class 2 mixed-valence compound, according to the Robin–Day classification. The AgIIatom is six-coordinated in a highly distorted octahedral geometry, while the AgIatom displays the expected linear geometry. In the crystal, the amino groups of the quinolin-8-amine ligands form N—H...N hydrogen bonds with the N atoms of the non-bridging cyanide ligands, forming a two-dimensional network parallel to (102). The terminal cyanide ligands are not engaged in polymeric bonds and the title compound is an authentic molecular complex. The title molecule is thus a rare example of a stable AgI,IIcomplex, and the first mixed-valence AgI,IImolecular complex characterized by X-ray diffraction.
APA, Harvard, Vancouver, ISO, and other styles
9

Smékal, Zdenek, Zdenek Trávnícek, Jaromír Marek, and Milan Nádvornik. "Cyano-Bridged Bimetallic Complexes of Copper(II) with Nitroprusside. Crystal Structure of [Cu(H2NCH2CH(NH2)CH3)2Fe(CN)5NO] . H2O." Australian Journal of Chemistry 53, no. 3 (2000): 225. http://dx.doi.org/10.1071/ch99131.

Full text
Abstract:
Five new complexes of compositions [Cu(1,2-pn)2Fe(CN)5NO]·H2O (1,2-pn = propane-1,2-diamine) and [Cu(L)Fe(CN)5NO]·xH2O (L = tmen (N,N,N′,N′-tetramethylethane-1,2-diamine), x = 0.5; L = trimeen (N,N,N′-trimethylethane-1,2-diamine), x = 1; L = dien (N-(2-aminoethyl)ethane-1,2-diamine), x = 0; L = medpt (N-(3-aminopropyl)-N-methylpropane-1,3-diamine), x = 2) have been isolated from the reaction mixture of Cu(ClO4)2·6H2O (or CuCl2·2H2O), the amine and Na2 [Fe(CN)5NO]·2H2O in water. The complexes have been characterized by infrared and ultraviolet–visible spectroscopies, and magnetic measurements. Single-crystal X-ray structural analysis revealed that the [Cu(1,2-pn)2Fe(CN)5NO]·H2O complex assumes a cyanide-bridged binuclear structure in which iron(II) is six-coordinated by five cyanide ligands and one nitrosyl group (the nitrosyl group lies cis to the bridging cyanide group), while copper(II) is five-coordinated by two propane-1,2-diamine ligands and a bridging cyanide ligand in a distorted tetragonal pyramidal arrangement.
APA, Harvard, Vancouver, ISO, and other styles
10

Nakamura, Mikio. "Is Cyanide Really a Strong-Field Ligand?" Angewandte Chemie International Edition 48, no. 15 (February 16, 2009): 2638–40. http://dx.doi.org/10.1002/anie.200805446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cyanide ligand"

1

Garnier, Delphine. "Open-shell Coordination Compounds based on Cyanide and Scorpionate Ligands." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066296/document.

Full text
Abstract:
Cette thèse porte sur la synthèse et la caractérisation de complexes octaédrique de fer(II) et fer(III) coordinés par un ligand tridente de type scorpionate (symétrie fac) et par trois ligands cyanures. Leur utilisation en tant que metalloligand face à des ions métalliques partiellement bloqués est étudiée. Les ligands cyanures, de par leur caractère ambidente, permettent un accès facile aux espèces hétérobimétalliques. De plus, ces ligands sont connus pour transmettre efficacement l'interaction d'échange magnétique et donc pour favoriser la communication électronique intramoléculaire entre les ions métalliques qu'ils relient. La fonctionalisation des ligands scorpionates permet de contrôler les propriétés électroniques intrinsèques des complexes précurseurs de fer, et donc de moduler les propriétés des espèces polynucléaires obtenues à partir de ces dernières par auto-assemblage. Dans cette thèse, un intérêt particulier est porté aux systèmes {FeCo} en raison de leur capacité à présenter une bistabilité électronique (propriétés photomagnétiques ou de molécules/chaines aimants). Les systèmes cyanuré {FeCo} sont particulièrement adaptés pour l'observation de réarrangements électroniques thermo- et/ou photo-induit, comme en témoignent le nombre important de composés cyanurés photomagnétiques dans la littérature
The work presented in this PhD dissertation focuses on the synthesis and the characterisation of octahedral iron(II) and iron(III) complexes coordinated by a tridentate ligand of the scorpionate family (fac- geometry) and three cyanide ligands. Their use as metalloligands in respect to partially blocked metal ions is studied. Because of their ambidentate character, cyanide ligands open the door to facile synthesis of heterobimetallic species. Moreover, these ligands are known to be efficient magnetic exchange interaction transmitter, thus favouring intramolecular electronic communication between the metal ions they are bridging. The functionalisation of scorpionate ligands allows control over the intrinsic electronic properties of the iron precursor complexes, thus allows to tune the properties of the obtained polynuclear species from the latter by self-assembly. In this PhD dissertation, a particular interest was taken in {FeCo} systems because of their potential ability to exhibit electronic bistability (photomagnetic properties or SMM/SCM behaviour). Cyanide-bridged {FeCo} systems are particularly suitable for the observation of thermally or light-induced electron rearrangements, as testified by the wide range of photomagnetic cyanide-bridged compounds in the literature
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Guibin. "On Thallium (III) and binuclear platinum-thallium complexes with N-donor ligands in solution and in solid." Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Onganusorn, Sriwipha. "Cyanide complexes as redox-active ligands." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wood, Andrew John. "Mixed-metal complexes incorporating redox-active cyanomanganese ligands." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hicks, Owen Michael. "Complexes of redox-active cyanomanganese ligands." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bartlett, Ian Mark. "The redox activiation of alkyne ligands in group 6 transition metal complexes." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reich, Blair Jesse Ellyn. "Cyanide-catalyzed C-C bond formation: synthesis of novel compounds, materials and ligands for homogeneous catalysis." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4987.

Full text
Abstract:
Cyanide-catalyzed aldimine coupling was employed to synthesize compounds with 1,2-ene-diamine and α-imine-amine structural motifs: 1,2,N,N'- tetraphenyletheylene-1,2-diamine (13) and (+/-)-2,3-di-(2-hydroxyphenyl)-1,2- dihydroquinoxaline (17), respectively. Single crystal X-ray diffraction provided solidstate structures and density functional theory calculations were used to probe isomeric preferences within this and the related hydroxy-ketone/ene-diol system. The enediamine and imine-amine core structures were calculated to be essentially identical in energy. However, additional effects-such as π conjugation-in 13 render an enediamine structure that is slightly more stable than the imine-amine tautomer (14). In contrast, the intramolecular hydrogen bonding present in 17 significantly favors the imine-amine isomer over the ene-diamine tautomer (18). Aldimine coupling (AIC) is the nitrogen analogue of the benzoin condensation and has been applied to dialdimines, providing the first examples of cyclizations effected by cyanide-catalyzed AIC. Sodium cyanide promoted the facile, intramolecular cyclization of several dialdimines in N,N-dimethylformamide, methanol, or dichloromethane/water (phase-transfer conditions) yielding a variety of six-membered heterocycles. Under aerobic conditions, an oxidative cyclization occurs to provide the diimine heterocycle. Cyanide-catalyzed aldimine coupling was employed as a new synthetic method for oligomerization. Nine rigidly spaced dialdimines were oxidatively coupled under aerobic conditions to yield conjugated oligoketimines and polyketimines with unprecedented structure and molecular weight (DP = 2 - 23, ~700 -8200 g/mol). The α- diimine linkage was established based on IR spectroscopy, NMR spectroscopy, size exclusion chromatography, and X-ray crystallographic characterization of the model oxidized dimer of N-benzylidene-(p-phenoxy)-aniline. Cyclic voltammetry indicates ptype electrical conductivity, suggesting they are promising candidates for plastic electronic devices. The cyanide-catalyzed benzoin condensation reaction of 4-substituted benzaldehydes followed by oxidation to the diketone, and the Schiff Base condensation of two equivalents of o-aminophenol provides 2,3-(4-X-phenyl)2-1,4-(2- hydroxyphenyl)2-1,4-diazabutadiene. The ligand is given the moniker X-dabphol. These ligands are readily metallated to form M-X-dabphol complexes. The copper complexes catalytically fix CO2 with propylene oxide to yield propylene carbonate. DFT studies along with a comparison with Hammet parameters help validate and elaborate on the catalytic cycle and the catalytic results obtained. The nickel complex is competent for olefin epoxidation. Synthesis, characterization, X-ray structure, DFT analysis, and catalytic activity of the parent nickel dabphol complex are reported.
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Graham M. "The coordination chemistry of functionalised poly(pyrazol-1-yl)borate ligands and the photophysical properties of cyanide-bridged d-f hybrids." Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/3584/.

Full text
Abstract:
The content of this thesis is concerned with two distinctly independent areas of research: (i) the synthesis and study of new poly(pyrazol-1-yl)borate ligands and their metal complexes; (ii) crystallographic and photophysical studies of new d-f hybrid complexes. Chapter One is divided into three parts: Part one gives a general introduction to poly(pyrazol-1-yl)borate chemistry along with a concise and up-to-date review of those ligands containing substituents in the C3 position of the pyrazolyl ring; part two provides a brief introduction into the physical properties of lanthanide(III) metal ions, as well as describing the practical applications of their individual spectroscopic properties; and part three contains a brief review on the structural chemistry of cyanide-bridged coordination polymers. Chapter Two describes the syntheses of four new scorpionates: dihydrobis[3-(4-pyridyl)pyrazol-1-yl]borate (Bp4py); dihydro-bis[3-(3-pyridyl)pyrazol-1- yl]borate (Bp3py); hydro-tris[3-(4-pyridyl)pyrazol-1-yl]borate (Tp4py) and hydrotris[3-(3-pyridyl)pyrazol-1-yl]borate (Tp3py). A series of X-ray crystallographic studies reveals a range of mononuclear, dinuclear and polymeric coordination complexes with various metal ions. Chapter Three describes a range of structural and photophysical studies on lanthanide(III) complexes of poly(pyrazol-1-yl)borate ligands. New mixed-ligand lanthanide(III) complexes with various combinations of the anionic ligands Tp2py , Bp2py and dibenzoylmethane (dbm) were prepared and structurally characterised. Photophysical studies on the isostructual series [Ln(Bp2py)(dbm)2] (Ln = Pr, Nd, Er, Yb) show characteristic near-IR luminescence from the lanthanide ion. Near-IR luminescence was also demonstrated from the complexes [Ln(Bp2py) 2(NO3)] and [Ln(Tp2py)(NO3) 2] (Ln = Pr, Er), upon suitable excitation of the ligand chromophores. Chapter Four describes the structural and photophysical properties of new cyanide-bridged d-f coordination polymers. Structural and photophysical studies are presented for a series of Ru-Ln complexes based on the [Ru(bipy)(CN)4] 2- donor unit connected to a Ln(III) energy-acceptor via cyanide bridges (where bipy is 2,2’- bipyridine and Ln = Pr, Nd, Er, Yb). Structural and photophysical studies were also performed on [Cr(CN)6][Ln(DMF)4(H2 O)2] complexes, in which the lanthanide ion (Ln = Nd, Yb) acts as the energy acceptor from the hexacyanochromate chromophore. The structures of [Cr(CN)6][Ln(H2 O)2] (Ln = Gd, Yb) and K2[Ru(phen)(CN)4] (where phen = 1,10-phenanthroline) are also presented. Chapter Five gives a brief review of the field of X-Ray Crystallography with analysis of the history and theory of the technique, as well as an overview of its practical aspects used in this work. A few crystal structures solved by the author, and independent of the topics in this thesis, are also reported.
APA, Harvard, Vancouver, ISO, and other styles
9

Calancea, Sergiu. "Synthèse et caractérisations de nouveaux complexes binucléaires à transfert d’électron de type {Fe(µ-CN)M} (M = Fe, Mn, Co)." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14802/document.

Full text
Abstract:
L’une des grandes directions de recherche dans la chimie moderne est la synthèse et l’étude denouveaux composés « commutables » capables de modifier leurs propriétés sous l’effet de stimuli extérieurs (température, lumière, champ magnétique ou électrique…). Ces systèmes peuvent stocker une information à l’échelle moléculaire. Dans ce contexte, parmi les systèmes les plus étudiés en chimie de coordination figurent les réseaux et les analogues moléculaires du bleu de Prusse. Cette thèse est dédiée à la synthèse et aux caractérisations de nouveaux analogues moléculaires du bleu de Prusse à transfert d’électron de type {Fe(µ-CN)M} (M = Fe, Mn, Co). Dans le premier chapitre sont présentées les familles de composés commutables à transfert d’électron par ordre décroissant de leur dimensionnalité, des systèmes 3D vers des systèmes discrets 0D. Le deuxième chapitre regroupe la synthèse et les caractérisations structurales, spectroscopiques, magnétiques, et électrochimiques de complexes-précurseurs de type [MII(LN5)]2+ et [FeIII(LN3/LN2)(CN)n]- (n = 2, 3) (LN5, LN3, LN2 étantdes ligands azotés penta-, tri- ou bidentes, respectivement) qui seront ensuite utilisés dans la synthèse des composés binucléaires. Le troisième chapitre présente la synthèse et les études structurales,spectroscopiques, magnétiques, optiques et électrochimiques de quatre nouveaux composés binucléaires paramagnétiques {FeIII(µ-CN)MII} (MII = Fe, Co). Enfin, le quatrième chapitre se focalise sur la synthèse et les propriétés spectroscopiques, magnétiques, photomagnétiques et électrochimiques de trois nouveaux complexes binucléaires diamagnétiques {FeII(µ-CN)CoIII} à transfert d’électron
One of the main research directions of modern chemistry is the synthesis and study of new switchablecompounds which can change their properties under external stimuli (temperature, light, magnetic orelectric field…). These systems can store the information at the molecular level. In this contextamongst the most studied systems in coordination chemistry are the 3D networks and the molecularPrussian blue analogs. This thesis deals with the synthesis and characterizations of new{Fe(µ-CN)M} (M = Fe, Mn, Co) molecular Prussian blue analogs. In the first chapter electrontransfer compounds are described in order of decreasing of their dimensionality, from 3D to thediscrete 0D systems. The second chapter describes the synthesis and structural, spectroscopic,electrochemical and magnetic characterizations of [MII(LN5)]2+ precursors (MII = Fe, Mn, Co) and[FeIII(LN3/LN2)(CN)n]- (n = 2, 3) (LN5, LN3, LN2 - nitrogen-based penta-, tri- and bi-dentate ligands,respectively), which are used in the synthesis of the binuclear complexes. Chapter three presents thesynthesis and structural, magnetic, spectroscopic and electrochemical studies of four binuclearparamagnetic {FeIII(µ-CN)MII} complexes (MII = Fe, Co). Chapter four is focused on the synthesisand spectroscopic, magnetic, photomagnetic and electrochemical properties of three binucleardiamagnetic {FeII(µ-CN)CoIII} electron transfer complexes
APA, Harvard, Vancouver, ISO, and other styles
10

Modarres, Tehrani Zoreh. "Etude électrochimique de la réactivité de complexes biscyclopentadiéniques du niobium vis à vis de fonctions organiques azotées (nitrile, hydroxylamine, amine, azo, nitroso et azoxy)." Dijon, 1997. http://www.theses.fr/1997DIJOS023.

Full text
Abstract:
Ce mémoire est consacré à l'électrosynthèse, à la reactivite et à l'étude du comportement électrochimique de complexes organométalliques du niobium. La première partie de ce mémoire décrit le processus d'isomérisation du ligand nitrile pour des complexes du niobocène en fonction du degré d'oxydation du centre métallique. La seconde partie indique une nouvelle voie de synthèse de complexe imido du niobocène par action d'hydroxylamine aromatique sur le monochlorure de niobocène. La réduction monoélectronique de ces dérivés conduit à des complexes dimériques du niobium (IV) diamagnétiques. En présence de dioxyde de carbone ceux-ci évoluent vers la formation de dérivés carbonato du niobocène. La protonation du complexe imido conduit au complexe cationique amido dont la réduction électrochimique s'avère être catalytique. L'action d'amines aliphatiques sur les dihalogénures de niobocène conduit dans certaines conditions opératoires au complexe imido correspondant. La troisième partie de ce mémoire décrit l'étude de la réduction de dichlorure de niobocène vis à vis du groupe diazo (azobenzène et benzo(c)cinnoline). Si dans le premier cas on accède à des complexes du niobocène contenant le ligand azobenzène, en présence de benzo(c)cinnoline, on assiste à une élimination des deux ligands cyclopentadiényles avec formation d'un cluster a trois atomes de niobium. La dernière partie de ce travail traite de la réactivité de dichlorure de niobocène en présence de nitrobenzène et d'azoxybenzène. Dans le premier cas on démontre une propriété radicalaire non usuelle du complexe du niobium dont la réaction induit une modification du mode de coordination d'un des ligands cyclopentadiényles. Dans le deuxième cas le monochlorure de niobocène s'avère etre un agent de désoxygénation particulièrement efficace pour la transformation d'azoxybenzène en azobenzène.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cyanide ligand"

1

Taylor, Robert J. The heterogeneous binding of oxygen: The preparation and characterization of cobalt cyanide complexes inside zeolite Y. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cyanide ligand"

1

Pardasani, R. T., and P. Pardasani. "Magnetic properties of μ-cyanide bridged dimolybdenum(V) complex with substituted amido ligand." In Magnetic Properties of Paramagnetic Compounds, 515–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54228-6_294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pardasani, R. T., and P. Pardasani. "Magnetic properties of μ-cyanide bridged vanadium(IV)-molybdenum(IV) complex with substituted amido ligand." In Magnetic Properties of Paramagnetic Compounds, 127–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54228-6_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

La Mar, Gerd N., S. Donald Emerson, Krishnakumar Rajarathnam, Liping P. Yu, Mark Chiu, and Stephen A. Sligar. "1H NMR Studies of Genetic Variants and Point Mutants of Myoglobin: Modulation of Distal Steric Tilt of Bound Cyanide Ligand." In Protein Structure and Engineering, 243–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5745-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, John W. "6. Carbon Monoxide and Cyanide Ligands in the Active Site of [FeFe]-Hydrogenases." In Metal-Carbon Bonds in Enzymes and Cofactors, 179–218. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559333-00179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pardasani, R. T., and P. Pardasani. "Magnetic properties of mixed ligand complex of cobalt(II) with hydrazinecarbothioamide and cyanate." In Magnetic Properties of Paramagnetic Compounds, 974. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pardasani, R. T., and P. Pardasani. "Magnetic properties of mixed ligand complex of copper(II) with hydrazinecarbothioamide and cyanate." In Magnetic Properties of Paramagnetic Compounds, 455. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54237-8_264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lippard, Stephen J. "Seven and Eight Coordinate Molybdenum Complexes, and Related Molybdenum (IV) Oxo Complexes, with Cyanide and Isocyanide Ligands." In Progress in Inorganic Chemistry, 91–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470166222.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pardasani, R. T., and P. Pardasani. "Magnetic properties of mixed ligand complex of cobalt(II) with [(methylthiophen-2-yl)methylene]hydrazono-carbothioamide and cyanate." In Magnetic Properties of Paramagnetic Compounds, 971–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pardasani, R. T., and P. Pardasani. "Magnetic properties of mixed ligand complex of copper(II) with [(methylthiophen-2-yl)methylene]hydrazono-carbothioamide and cyanate." In Magnetic Properties of Paramagnetic Compounds, 452–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54237-8_262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alam, Steve L., David P. Dutton, and James D. Satterlee. "Recombinant Perdeuterated Protein as an Efficient Method for Making Unambiguous Heme Proton Resonance Assignments: Cyanide-Ligated Glycera Dibranchiata Monomer Methemoglobin Component IV as an Example." In Nuclear Magnetic Resonance of Paramagnetic Macromolecules, 123–40. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8573-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cyanide ligand"

1

Fariati, I. Wayan Dasna, Yolanda Faradilla Fadli, and Siti Hartinah Qurbayni. "Study of structure prediction of complex compounds of zinc(II) chloride and cadmium(II) chloride with potassium cyanide and N,N’-diethylthiourea ligand." In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography