To see the other types of publications on this topic, follow the link: Cyanobacteria.

Journal articles on the topic 'Cyanobacteria'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cyanobacteria.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nakayama, Takuro, Mami Nomura, Yoshihito Takano, et al. "Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host." Proceedings of the National Academy of Sciences 116, no. 32 (2019): 15973–78. http://dx.doi.org/10.1073/pnas.1902538116.

Full text
Abstract:
Cyanobacteria are one of the most important contributors to oceanic primary production and survive in a wide range of marine habitats. Much effort has been made to understand their ecological features, diversity, and evolution, based mainly on data from free-living cyanobacterial species. In addition, symbiosis has emerged as an important lifestyle of oceanic microbes and increasing knowledge of cyanobacteria in symbiotic relationships with unicellular eukaryotes suggests their significance in understanding the global oceanic ecosystem. However, detailed characteristics of these cyanobacteria
APA, Harvard, Vancouver, ISO, and other styles
2

Hurley, Sarah J., Boswell A. Wing, Claire E. Jasper, Nicholas C. Hill, and Jeffrey C. Cameron. "Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria." Science Advances 7, no. 2 (2021): eabc8998. http://dx.doi.org/10.1126/sciadv.abc8998.

Full text
Abstract:
Ancestral cyanobacteria are assumed to be prominent primary producers after the Great Oxidation Event [≈2.4 to 2.0 billion years (Ga) ago], but carbon isotope fractionation by extant marine cyanobacteria (α-cyanobacteria) is inconsistent with isotopic records of carbon fixation by primary producers in the mid-Proterozoic eon (1.8 to 1.0 Ga ago). To resolve this disagreement, we quantified carbon isotope fractionation by a wild-type planktic β-cyanobacterium (Synechococcus sp. PCC 7002), an engineered Proterozoic analog lacking a CO2-concentrating mechanism, and cyanobacterial mats. At mid-Prot
APA, Harvard, Vancouver, ISO, and other styles
3

Kollmen, Jonas, and Dorina Strieth. "The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth." Life 12, no. 2 (2022): 223. http://dx.doi.org/10.3390/life12020223.

Full text
Abstract:
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metab
APA, Harvard, Vancouver, ISO, and other styles
4

Rangel, Luciana M., Lúcia H. S. Silva, Elisabeth J. Faassen, Miquel Lürling, and Kemal Ali Ger. "Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria." Toxins 12, no. 7 (2020): 465. http://dx.doi.org/10.3390/toxins12070465.

Full text
Abstract:
Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filament length: short vs. long) and chemical (saxitoxin: STX- vs. STX+) traits of a bloom-forming cyanobacterium (Raphidiopsis) offered at different concentrations in mixed diets with an edible phytoplankton to a copepod grazer. The copepod selectively grazed on the edible prey (avoidance of cyanobacter
APA, Harvard, Vancouver, ISO, and other styles
5

Parida, Anirbana, Samujjal Bhattacharjee, Prashansa Singh, and Arun Kumar Mishra. "Physiological and biochemical modulations in the thermophilic cyanobacterium Westiellopsis sp. TPR-29 under high sulfur supplementations." Journal of Bioresources 9, no. 2 (2022): 20–25. https://doi.org/10.5281/zenodo.8275344.

Full text
Abstract:
Cyanobacteria demonstrate versatile utilization of inorganic sulfur sources, contributing to the global sulfur cycle. Their resilience is evident in adapting to diverse sulfur bioavailability in different ecosystems. However, the impact of high sulfur concentrations on cyanobacterial physiology is a concern. This study focused on&nbsp;<em>Westiellopsis</em>&nbsp;sp. TPR-29, a heterocytous branched cyanobacterium inhabiting a sulfur-rich hot spring. The cyanobacterium was exposed to different sulfate concentrations (50 mM, 500 mM, and 650 mM), along with a control group (0.3 mM). After a 7-day
APA, Harvard, Vancouver, ISO, and other styles
6

Rajabpour, Nooshin, Bahareh Nowruzi, and Maryam Ghobeh. "Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats." Acta Biologica Slovenica 62, no. 2 (2019): 4–12. http://dx.doi.org/10.14720/abs.62.2.15753.

Full text
Abstract:
Cyanobacteria are known as a source of fine chemicals, renewable fuels, and toxic compounds. The present study aimed at evaluating the toxicity and antioxidant and antimicrobial activities of four cyanobacterial strains isolated from different habitats. Due to the lack of information regarding the relationship between toxicity and biological activity of the cyanobacteria in terrestrial and aquatic ecosystems of Iran, we decided to conduct a preliminary study on the cyanobacterial strains in order to identify the potentially toxic cyanobacteria strains. In this respect, biosynthesis genes relat
APA, Harvard, Vancouver, ISO, and other styles
7

Foster, Rachel A., and Jonathan P. Zehr. "Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations." Annual Review of Microbiology 73, no. 1 (2019): 435–56. http://dx.doi.org/10.1146/annurev-micro-090817-062650.

Full text
Abstract:
Cyanobacteria are common in symbiotic relationships with diverse multicellular organisms (animals, plants, fungi) in terrestrial environments and with single-celled heterotrophic, mixotrophic, and autotrophic protists in aquatic environments. In the sunlit zones of aquatic environments, diverse cyanobacterial symbioses exist with autotrophic taxa in phytoplankton, including dinoflagellates, diatoms, and haptophytes (prymnesiophytes). Phototrophic unicellular cyanobacteria related to Synechococcus and Prochlorococcus are associated with a number of groups. N2-fixing cyanobacteria are symbiotic
APA, Harvard, Vancouver, ISO, and other styles
8

Caraco, N. F., and R. Miller. "Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton." Canadian Journal of Fisheries and Aquatic Sciences 55, no. 1 (1998): 54–62. http://dx.doi.org/10.1139/f97-202.

Full text
Abstract:
To distinguish whether there is a causal link between cyanobacterial dominance and low CO2 and (or) the associated high pH, we ran duplicate competition experiments using a factorial design of CO2 by alkalinity. In various treatments, three concentrations of alkalinity (ca. 50, 500, and 5000 µequiv. ·L-1) and CO2 (ca. 1.3, 13, and 130 µM) generated three pH values (ca. 7, 8, and 9). At the end of about a 1-week incubation, Aphanizomenon flos aquae was the only cyanobacterium present, while the chlorophytes Scenedesmus and Selenastrum along with unidentified flagellates comprised the eukaryotic
APA, Harvard, Vancouver, ISO, and other styles
9

Deng, Ming-De, and John R. Coleman. "Ethanol Synthesis by Genetic Engineering in Cyanobacteria." Applied and Environmental Microbiology 65, no. 2 (1999): 523–28. http://dx.doi.org/10.1128/aem.65.2.523-528.1999.

Full text
Abstract:
ABSTRACT Cyanobacteria are autotrophic prokaryotes which carry out oxygenic photosynthesis and accumulate glycogen as the major form of stored carbon. In this research, we introduced new genes into a cyanobacterium in order to create a novel pathway for fixed carbon utilization which results in the synthesis of ethanol. The coding sequences of pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh) from the bacterium Zymomonas mobilis were cloned into the shuttle vector pCB4 and then used to transform the cyanobacterium Synechococcus sp. strain PCC 7942. Under control of the promoter f
APA, Harvard, Vancouver, ISO, and other styles
10

Olsson-Francis, Karen, Rosa de la Torre, and Charles S. Cockell. "Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit." Applied and Environmental Microbiology 76, no. 7 (2010): 2115–21. http://dx.doi.org/10.1128/aem.02547-09.

Full text
Abstract:
ABSTRACT Many cyanobacteria are known to tolerate environmental extremes. Motivated by an interest in selecting cyanobacteria for applications in space, we launched rocks from a limestone cliff in Beer, Devon, United Kingdom, containing an epilithic and endolithic rock-dwelling community of cyanobacteria into low Earth orbit (LEO) at a height of approximately 300 kilometers. The community was exposed for 10 days to isolate cyanobacteria that can survive exposure to the extreme radiation and desiccating conditions associated with space. Culture-independent (16S rRNA) and culture-dependent metho
APA, Harvard, Vancouver, ISO, and other styles
11

Pinevich, A. V., and S. G. Averina. "Taxonomy of cyanobacteria: the era of change." Microbiology 93, no. 5 (2024): 501–18. https://doi.org/10.31857/s0026365624050019.

Full text
Abstract:
Until mid-1970s, cyanobacteria have been interpreted as algae despite they differed from other members of this taxonomic group by the absence of cell nucleus (that is currently considered a character of prokaryotic organization). However, when bacteria were reinterpreted as prokaryotes, blue-green algae became reattributed as cyanobacteria, and bacteriologists began to study their cultured strains with microbiology methods. But since these objects did not obey the provisions of bacteriological code (ICNB), the development of their taxonomy had certain problems, especially regarding nomenclatur
APA, Harvard, Vancouver, ISO, and other styles
12

Dash, Sidhartha Kumar, Jitendra Kumar Pandey, Mrutyunjay Jena, and Basanti Biswal. "Effect of Heat Stress and the Recovery Potential of Heterocystous Cyanobacterium, Anabaena iyengarii Bharadwaja 1935." Journal of Pure and Applied Microbiology 14, no. 4 (2020): 2467–76. http://dx.doi.org/10.22207/jpam.14.4.24.

Full text
Abstract:
Cyanobacteria, the major photosynthetic organisms, cover a large surface area of this planet. These organisms, being photosynthetic, have the capacity for sequestration of atmospheric carbon dioxide, a significant greenhouse gas that causes global warming. In this work, we have collected, developed pure culture, and identified 25 cyanobacterial species from semi arid agricultural rice fields of western Odisha with the high-temperature environmental setting. The purpose was to screen the cyanobacteria that can survive and grow at high temperatures with high photosynthetic efficiency. Cyanobacte
APA, Harvard, Vancouver, ISO, and other styles
13

Stuart, Rhona K., Eric R. A. Pederson, Philip D. Weyman, Peter K. Weber, Ulla Rassmussen, and Christopher L. Dupont. "Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism." ISME Journal 14, no. 12 (2020): 3068–78. http://dx.doi.org/10.1038/s41396-020-00738-4.

Full text
Abstract:
Abstract In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in
APA, Harvard, Vancouver, ISO, and other styles
14

Sathyananth, M., and T. Leon Stephan Raj. "An Overview of Cyanobacterial Contributions to Agriculture." Asian Research Journal of Agriculture 17, no. 2 (2024): 363–80. http://dx.doi.org/10.9734/arja/2024/v17i2458.

Full text
Abstract:
Purpose: This paper reviews the diverse agricultural applications of cyanobacteria for improving soil health, plant growth, and agricultural sustainability. Research Method: The paper provides a literature review summarizing recent research on cyanobacteria's roles in soil aggregation, biofertilization, abiotic/biotic stress tolerance, yield improvements, carbon sequestration, and bioremediation. Both laboratory studies and field trials evaluating cyanobacteria's effects on soil properties and plant growth are discussed. Findings: Cyanobacteria can enhance soil structure, provide fixed nitroge
APA, Harvard, Vancouver, ISO, and other styles
15

Dedvisitsakul, Plaipol, Kanchana Watla-iad, Supenya Chittapun, Theppanya Charoenrat, and Chanitchote Piyapittayanun. "Molecular Identification of Some Selected Cyanobacteria and Their Antioxidant Activities." Trends in Sciences 22, no. 2 (2024): 8950. http://dx.doi.org/10.48048/tis.2025.8950.

Full text
Abstract:
Cyanobacteria, photosynthetic prokaryotes, are promising sources of biologically active compounds with antioxidant properties, attracting interest in their potential applications in the food, pharmaceutical, and cosmetic sectors. This present study aimed to use 16S rRNA sequences for identification of some selected strains of cyanobacteria which were previously morphologically identified. The investigation of their antioxidant activities was also performed by ABTS radical scavenging assay, ORAC-fluorescein assay and metal chelating assay in this study. Molecular identification of 8 isolates re
APA, Harvard, Vancouver, ISO, and other styles
16

Kirkwood, A. E., C. Nalewajko, and R. R. Fulthorpe. "The impacts of cyanobacteria on pulp-and-paper wastewater toxicity and biodegradation of wastewater contaminants." Canadian Journal of Microbiology 51, no. 7 (2005): 531–40. http://dx.doi.org/10.1139/w05-030.

Full text
Abstract:
This study investigated the effects of cyanobacteria from pulp-and-paper waste-treatment systems on biological toxicity removal and biodegradation of certain wastewater contaminants. In field and batch studies, using the Microtox®assay, cyanobacterial biomass and final wastewater toxicity were significantly correlated. In softwood-based wastewater, a decrease in toxicity was negatively correlated with cyanobacterial biomass, but the correlation was positive in hardwood-based wastewater. In the softwood-based wastewater, toxicity remained higher in the light than it was in the dark, whereas in
APA, Harvard, Vancouver, ISO, and other styles
17

Koval, Ekaterina V., and Svetlana Yu Ogorodnikova. "The prospect of using the cyanobacterium Nostoc muscorum to improve vital activity of barley seedlings by various methods of seed treatment." BIO Web of Conferences 36 (2021): 04005. http://dx.doi.org/10.1051/bioconf/20213604005.

Full text
Abstract:
The influence of the cyanobacterium Nostoc muscorum on vital activity of barley seedlings of the species Novichok was researched. In the experiments different ways of cyanobacterial treatment were used: introducing microorganisms in the growth medium and pre-sowing inoculation of barley seeds with cyanobacteria. The influence of cyanobacterial treatment on biochemical indices and linear growth of barley plants was assessed. The share of plastid pigments and intensity of the processes of lipid peroxidation were assessed in a spectrophotometric way, standard methods were applied. It was stated t
APA, Harvard, Vancouver, ISO, and other styles
18

Águila-Carricondo, Pilar, Raúl Román, José Ignacio Marín-Guirao, Yolanda Cantón, and Miguel de Cara. "Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi." Pathogens 13, no. 7 (2024): 579. http://dx.doi.org/10.3390/pathogens13070579.

Full text
Abstract:
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi (Phytophthora capsici, Pythium aphanidermatum, and Fusarium oxysporum f. sp. radicis-cucumerinum). Three cyanobacteria-based production factors were considered: (i) cyanobacterium strain, (ii) cyanobacterial culture growth phase, and (iii) different post-harvest treatments: raw cultures, cyanob
APA, Harvard, Vancouver, ISO, and other styles
19

Douglas, Angela E., and John A. Raven. "Genomes at the interface between bacteria and organelles." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1429 (2003): 5–18. http://dx.doi.org/10.1098/rstb.2002.1188.

Full text
Abstract:
The topic of the transition of the genome of a free–living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear–cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free–living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have b
APA, Harvard, Vancouver, ISO, and other styles
20

Wu, Tianhao, Ran Dai, Zhaosheng Chu, and Jing Cao. "Rapid Recovery of Buoyancy in Eutrophic Environments Indicates That Cyanobacterial Blooms Cannot Be Effectively Controlled by Simply Collapsing Gas Vesicles Alone." Water 15, no. 10 (2023): 1898. http://dx.doi.org/10.3390/w15101898.

Full text
Abstract:
Many aquatic ecosystems are seriously threatened by cyanobacteria blooms; gas vesicles enable cyanobacteria to form harmful cyanobacterial blooms rapidly. Many lake managers try to control cyanobacterial blooms by collapsing gas vesicle, but it is still unclear whether gas vesicle recovery will cause this method to fail. Through the culture experiments of three cyanobacteria, it was found that all cyanobacteria with collapsed gas vesicles can rapidly regain buoyancy in a few days under nutrient-sufficient environments, and average gas vesicle content was even 9% higher than initially. In contr
APA, Harvard, Vancouver, ISO, and other styles
21

Watanabe, Tomoaki, and Tokumasa Horiike. "The Evolution of Molybdenum Dependent Nitrogenase in Cyanobacteria." Biology 10, no. 4 (2021): 329. http://dx.doi.org/10.3390/biology10040329.

Full text
Abstract:
Nitrogen fixation plays a crucial role in the nitrogen cycle by helping to convert nitrogen into a form usable by other organisms. Bacteria capable of fixing nitrogen are found in six phyla including Cyanobacteria. Molybdenum dependent nitrogenase (nif) genes are thought to share a single origin as they have homologs in various phyla. However, diazotrophic bacteria have a mosaic distribution within the cyanobacterial lineage. Therefore, the aim of this study was to determine the cause of this mosaic distribution. We identified nif gene operon structures in the genomes of 85 of the 179 cyanobac
APA, Harvard, Vancouver, ISO, and other styles
22

D, Mutthuraj, Prathima R, and Kshitija Aherka. "Green Alchemy: Mechanisms of Cyanobacterial Photoprotection in the Spotlight." International Journal of Health Sciences and Research 14, no. 8 (2024): 347–63. http://dx.doi.org/10.52403/ijhsr.20240840.

Full text
Abstract:
Cyanobacteria, ancient photosynthetic microorganisms, have perfected an intricate defense system against harsh ultraviolet radiation (UVR) and environmental stressors. Their primary defense deploys pigments like chlorophyll-a and carotenoids to absorb and dissipate excess energy, shielding vital cellular structures. Secondary defense strategies introduce non-enzymatic antioxidants like ascorbate and carotenoids, fortifying cyanobacteria against reactive oxygen species triggered by UVR exposure. Moving further, tertiary photoprotection utilizes UV-absorbing compounds, such as scytonemin and myc
APA, Harvard, Vancouver, ISO, and other styles
23

Novis, Phil M., Jackie Aislabie, Susan Turner, and Malcolm McLeod. "Chlorophyta, Xanthophyceae and Cyanobacteria in Wright Valley, Antarctica." Antarctic Science 27, no. 5 (2015): 439–54. http://dx.doi.org/10.1017/s0954102015000164.

Full text
Abstract:
AbstractWright Valley, Victoria Land contains numerous aquatic habitats suitable for the growth of algae in summer. Excepting diatoms and lichen phycobionts, algal diversity and distribution in the valley was documented. Using cultures and environmental cloning eight cyanobacterial and 14 eukaryotic species were revealed. The cyanobacterium Microcoleus vaginatus and the chlorophycean Chlorococcum sp. 1 were the most common, both occurring in more than one habitat (ponds, soils or streams). Ponds harboured the most diverse communities. Habitat specialization was rare. Chlamydomonads were not fo
APA, Harvard, Vancouver, ISO, and other styles
24

Harwood, Thomas V., Esthefani G. Zuniga, HoJun Kweon, and Douglas D. Risser. "The cyanobacterial taxis protein HmpF regulates type IV pilus activity in response to light." Proceedings of the National Academy of Sciences 118, no. 12 (2021): e2023988118. http://dx.doi.org/10.1073/pnas.2023988118.

Full text
Abstract:
Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second
APA, Harvard, Vancouver, ISO, and other styles
25

Hewelt-Belka, Weronika, Ágata Kot-Wasik, Paula Tamagnini, and Paulo Oliveira. "Untargeted Lipidomics Analysis of the Cyanobacterium Synechocystis sp. PCC 6803: Lipid Composition Variation in Response to Alternative Cultivation Setups and to Gene Deletion." International Journal of Molecular Sciences 21, no. 23 (2020): 8883. http://dx.doi.org/10.3390/ijms21238883.

Full text
Abstract:
Cyanobacteria play an important role in several ecological environments, and they are widely accepted to be the ancestors of chloroplasts in modern plants and green algae. Cyanobacteria have become attractive models for metabolic engineering, with the goal of exploring them as microbial cell factories. However, the study of cyanobacterial lipids’ composition and variation, and the assessment of the lipids’ functional and structural roles have been largely overlooked. Here, we aimed at expanding the cyanobacterial lipidomic analytical pipeline by using an untargeted lipidomics approach. Thus, t
APA, Harvard, Vancouver, ISO, and other styles
26

Manpreet, Manpreet, Lovepreet Kaur, Shveta Shveta, and Jasvirinder Singh Khattar. "Exalted Level of Nitrogen Metabolism In the Presence of Sodium Sulphide in Nostocellipososporum under Thermal Stress." Acta Biology Forum 3, no. 3 (2024): 1–8. https://doi.org/10.51470/abf.2024.3.3.01.

Full text
Abstract:
It is well-recognized that thermophilic cyanobacteria flourish in sulfur-rich thermal springs. Mesophilic cyanobacteria are available at temperatures ranging from 28 to 37°C. This study sought to determine if mesophilic cyanobacteria can also grow at elevated temperatures in the presence of sulphide, and if yes ,then what role sulfide would have in reducing high temperature stress in mesophilic cyanobacterial organisms. The prolifecation of Nostoc ellipososporum, a mesophilic cyanobacterium, was examined at its optimal temperature, both in the presence and absence of sulphide under thermal str
APA, Harvard, Vancouver, ISO, and other styles
27

Asih, D. R., T. C. Summerfield, and J. J. Eaton-Rye. "Exploration of cyanobacteria as bioremediation candidates to reduce phosphorus contamination." IOP Conference Series: Earth and Environmental Science 1062, no. 1 (2022): 012027. http://dx.doi.org/10.1088/1755-1315/1062/1/012027.

Full text
Abstract:
Abstract The aim of this research is to evaluate cyanobacteria as a bioremediation agent for the removal of inorganic phosphate. We have adopted two approaches. The first approach involves the inactivation of the sphU gene in a model cyanobacterium. This gene encodes a negative regulator of the pho-regulon, this regulon includes genes involved in phosphate uptake. Inactivation of sphU results in the constitutive uptake of inorganic phosphate and its accumulation in polyphosphate bodies within cyanobacterial cells. Preliminary data using Synechocystis sp. PCC 6803 has shown that the ΔSphU strai
APA, Harvard, Vancouver, ISO, and other styles
28

Toledo, Gerardo, Yoav Bashan, and Al Soeldner. "In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria." Canadian Journal of Microbiology 41, no. 11 (1995): 1012–20. http://dx.doi.org/10.1139/m95-140.

Full text
Abstract:
An isolate of the filamentous cyanobacterium Microcoleus sp. was obtained from black mangrove aerial root (pneumatophore) and inoculated onto young mangrove seedlings to evaluate N2-fixation and root-colonization capacities of the bacterium under in vitro conditions in closed-system experiments. N2 fixation (acetylene reduction) gradually increased with time and reached its peak 5 days after inoculation. Later, it decreased sharply. The level of N2 fixation in the presence of the plant was significantly higher than the amount of nitrogen fixed by a similar quantity of cyanobacteria on a N-free
APA, Harvard, Vancouver, ISO, and other styles
29

Wilk-Woźniak, Elżbieta. "An introduction to the 'micronet' of cyanobacterial harmful algal blooms (CyanoHABs): cyanobacteria, zooplankton and microorganisms: a review." Marine and Freshwater Research 71, no. 5 (2020): 636. http://dx.doi.org/10.1071/mf18378.

Full text
Abstract:
Cyanobacterial harmful algal blooms are known all around the world. Climate change (temperature increase) and human activity (eutrophication) are factors that promote the proliferation of cyanobacteria, leading to the development of blooms and the release of toxins. Abiotic and biotic factors are responsible for the development of blooms and how long they last. Although the abiotic factors controlling blooms are well known, knowledge of biotic factors and their interactions is still lacking. This paper reviews five levels of biotic interactions, namely cyanobacteria–zooplankton, cyanobacteria–
APA, Harvard, Vancouver, ISO, and other styles
30

Cairns, Johannes, Sebastián Coloma, Kaarina Sivonen, and Teppo Hiltunen. "Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability." Royal Society Open Science 3, no. 12 (2016): 160839. http://dx.doi.org/10.1098/rsos.160839.

Full text
Abstract:
Interactions between nitrogen-fixing (i.e. diazotrophic) cyanobacteria and their viruses, cyanophages, can have large-scale ecosystem effects. These effects are mediated by temporal alterations in nutrient availability in aquatic systems owing to the release of nitrogen and carbon sources from cells lysed by phages, as well as by ecologically important changes in the diversity and fitness of cyanobacterial populations that evolve in the presence of phages. However, ecological and evolutionary feedbacks between phages and nitrogen-fixing cyanobacteria are still relative poorly understood. Here,
APA, Harvard, Vancouver, ISO, and other styles
31

Singh, Venus, and DV Singh. "Cyanobacteria modulated changes and its impact on bioremediation of saline-alkaline soils." Bangladesh Journal of Botany 44, no. 4 (2018): 653–58. http://dx.doi.org/10.3329/bjb.v44i4.38646.

Full text
Abstract:
Saline-alkaline (Usar) soils have high pH and undesirable salts on their surface. A halotolerant, heterocystous and nitrogen fixing cyanobacterium Nostoc calcicola Breb. BREB grow successfully on salinealkaline soils of Eastern Uttar Pradesh. Soil pot experimentation has been conducted in laboratory condition to study the reclamation of saline-alkaline soils collected from investigated site. Both sterilized and natural soils were taken in earthen pots to observe the changes in soil properties inoculated with cyanobacteria and gypsum. In such treated soils significant decrease in pH, ECe and Na
APA, Harvard, Vancouver, ISO, and other styles
32

Andeden, Enver Ersoy, Sahlan Ozturk, and Belma Aslim. "Antiproliferative, neurotoxic, genotoxic and mutagenic effects of toxic cyanobacterial extracts." Interdisciplinary Toxicology 11, no. 4 (2018): 267–74. http://dx.doi.org/10.2478/intox-2018-0026.

Full text
Abstract:
Abstract Cyanobacteria are the rich resource of various secondary metabolites including toxins with broad pharmaceutical significance. The aim of this work was to evaluate the antiproliferative, neurotoxic, genotoxic and mutagenic effects of cyanobacterial extracts containing Microcystin-LR (MCLR) in vitro. ELISA analysis results showed that MCLR contents of five cyanobacterial extracts were 2.07 ng/mL, 1.43 ng/mL, 1.41 ng/mL, 1.27 ng/mL, and 1.12 ng/mL for Leptolyngbya sp. SB1, Phormidium sp. SB4, Oscillatoria earlei SB5, Phormidium sp. SB2, Uncultured cyanobacterium, respectively. Phormidium
APA, Harvard, Vancouver, ISO, and other styles
33

Kapitulčinova, D., C. S. Cockell, K. R. Hallam, and K. V. Ragnarsdottir. "Effect of cyanobacterial growth on biotite surfaces under laboratory nutrient-limited conditions." Mineralogical Magazine 72, no. 1 (2008): 71–75. http://dx.doi.org/10.1180/minmag.2008.072.1.71.

Full text
Abstract:
AbstractLaboratory experiments with two cyanobacterial strains grown on low-nutrient agar media in the presence of biotite flakes were performed in order to reveal possible mechanisms and rates of cyanobacterial bioweathering. Both cyanobacteria colonized the biotite flakes.Leptolyngbyagrew mostly in the biotite interlayers, whereasHassalliacolonized the sides and the topmost surface of the biotite flakes. After a 3-month incubation, rounded features including cyanobacterium-shaped pits were observed on the biotite surface cleared of the organic material. No such features were observed on flak
APA, Harvard, Vancouver, ISO, and other styles
34

Apdila, Egi Tritya, Shukumi Inoue, Mie Shimojima, and Koichiro Awai. "Complete Replacement of the Galactolipid Biosynthesis Pathway with a Plant-Type Pathway in the Cyanobacterium Synechococcus elongatus PCC 7942." Plant and Cell Physiology 61, no. 9 (2020): 1661–68. http://dx.doi.org/10.1093/pcp/pcaa090.

Full text
Abstract:
Abstract Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major components of thylakoid membranes and well-conserved from cyanobacteria to chloroplasts. However, cyanobacteria and chloroplasts synthesize these galactolipids using different pathways and enzymes, but they are believed to share a common ancestor. This fact implies that there was a replacement of the cyanobacterial galactolipid biosynthesis pathway during the evolution of a chloroplast. In this study, we first replaced the cyanobacterial MGDG biosynthesis pathway in a model cyanobacterium, Synechoc
APA, Harvard, Vancouver, ISO, and other styles
35

Kelly, Ciarán L., George M. Taylor, Aistė Šatkutė, Linda Dekker, and John T. Heap. "Transcriptional Terminators Allow Leak-Free Chromosomal Integration of Genetic Constructs in Cyanobacteria." Microorganisms 7, no. 8 (2019): 263. http://dx.doi.org/10.3390/microorganisms7080263.

Full text
Abstract:
Cyanobacteria are promising candidates for sustainable bioproduction of chemicals from sunlight and carbon dioxide. However, the genetics and metabolism of cyanobacteria are less well understood than those of model heterotrophic organisms, and the suite of well-characterised cyanobacterial genetic tools and parts is less mature and complete. Transcriptional terminators use specific RNA structures to halt transcription and are routinely used in both natural and recombinant contexts to achieve independent control of gene expression and to ‘insulate’ genes and operons from one another. Insulating
APA, Harvard, Vancouver, ISO, and other styles
36

Wilson, Kim M., Mark A. Schembri, Peter D. Baker, and Christopher P. Saint. "Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis raciborskii and Design of a Species-Specific PCR." Applied and Environmental Microbiology 66, no. 1 (2000): 332–38. http://dx.doi.org/10.1128/aem.66.1.332-338.2000.

Full text
Abstract:
ABSTRACT Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis re
APA, Harvard, Vancouver, ISO, and other styles
37

Álvarez, Consolación, José A. Navarro, Fernando P. Molina-Heredia, and Vicente Mariscal. "Endophytic Colonization of Rice (Oryza sativa L.) by the Symbiotic Strain Nostoc punctiforme PCC 73102." Molecular Plant-Microbe Interactions® 33, no. 8 (2020): 1040–45. http://dx.doi.org/10.1094/mpmi-01-20-0015-sc.

Full text
Abstract:
Cyanobacteria are phototrophic microorganisms able to establish nitrogen-fixing symbiotic associations with representatives of all four of the major phylogenetic divisions of terrestrial plants. Despite increasing knowledge on the beneficial effects of cyanobacteria in rice fields, the information about the interaction between these microorganisms and rice at the molecular and structural levels is still limited. We have used the model nitrogen-fixing cyanobacterium Nostoc punctiforme to promote a long-term stable endophytic association with rice. Inoculation with this strain of hydroponic cult
APA, Harvard, Vancouver, ISO, and other styles
38

Joshi, Susan M., and Leland J. Jackson. "How Might Changing Climate Limit Cyanobacteria Growth in Shallow Prairie Lakes? An Empirical Space-For-Time Evaluation of the Potential Role of Increasing Sulfate." Advances in Environmental and Engineering Research 3, no. 1 (2021): 1. http://dx.doi.org/10.21926/aeer.2201007.

Full text
Abstract:
Cyanobacteria blooms alter aquatic ecosystems and occur frequently in shallow prairie lakes, which are predicted to increase in salinity as the regional climate becomes hotter and drier. However, flat landscapes that experience depression bottom salinity with high concentrations of sulfate in addition to sodium and chloride, may mitigate nutrient increases or even inhibit cyanobacteria growth. Cyanobacteria can dominate shallow lakes with low N:P ratios because many cyanobacteria species fix dissolved N2, whether due to in-lake denitrification or exchange with the atmosphere, a process that re
APA, Harvard, Vancouver, ISO, and other styles
39

Duchnik, Kornelia, Jan Bialczyk, Ewelina Chrapusta-Srebrny, and Beata Bober. "Inhibition of growth rate and cylindrospermopsin synthesis by Raphidiopsis raciborskii upon exposure to macrophyte Lemna trisulca (L)." Ecotoxicology 30, no. 3 (2021): 470–77. http://dx.doi.org/10.1007/s10646-021-02377-7.

Full text
Abstract:
AbstractImpact of macrophyte Lemna trisulca on the growth rate and synthesis of cylindrospermopsin (CYN) by cyanobacterium Raphidiopsis raciborskii was determined. The presence of L. trisulca inhibited the biomass accumulation of the cyanobacterium by 25% compared to the control during co-cultivation. The simultaneous cultivation of these organisms slightly affected the inhibition of macrophyte growth rate by 5.5% compared to the control. However, no morphological changes of L. trisulca after incubation with cyanobacteria were observed. It was also shown that the long-term (35 days) co-cultiva
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Mengmeng, Huifen Zhang, Menggaoshan Chen, Liuyan Yang, and Yichen Yang. "Dark accelerates dissolved inorganic phosphorus release of high-density cyanobacteria." PLOS ONE 15, no. 12 (2020): e0243582. http://dx.doi.org/10.1371/journal.pone.0243582.

Full text
Abstract:
Bloom-forming cyanobacteria dramatically influence nutrient cycling in eutrophic freshwater lakes. The phosphorus (P) assimilation and release of bloom-forming cyanobacteria significantly may also affect the phosphorus source and amounts in water. To understand the phosphorus release process of bloom-forming cyanobacteria below the accumulated surface and sedimentary bloom-forming cyanobacteria, the degradation of bloom-forming cyanobacteria dominated by Microcystis spp. at different cell density in the dark was investigated over a 25-day microcosm experiment. The dissolved inorganic phosphoru
APA, Harvard, Vancouver, ISO, and other styles
41

Hao, Fei, Xinyi Li, Jiameng Wang, et al. "Separation of Bioproducts through the Integration of Cyanobacterial Metabolism and Membrane Filtration: Facilitating Cyanobacteria’s Industrial Application." Membranes 12, no. 10 (2022): 963. http://dx.doi.org/10.3390/membranes12100963.

Full text
Abstract:
In this work, we propose the development of an efficient, economical, automated, and sustainable method for separating bioproducts from culture medium via the integration of a sucrose-secreting cyanobacteria production process and pressure-driven membrane filtration technology. Firstly, we constructed sucrose-secreting cyanobacteria with a sucrose yield of 600__700 mg/L sucrose after 7 days of salt stress, and the produced sucrose could be fully separated from the cyanobacteria cultures through an efficient and automated membrane filtration process. To determine whether this new method is also
APA, Harvard, Vancouver, ISO, and other styles
42

Tsyrenova, D. D., S. V. Zaitseva, O. P. Dagurova, V. B. Dambaev, and D. D. Barkhutova. "Cyanobacteria in freshwater Lake Dikoye (Pribaikalsky district, Buryatia, Siberia) under intensive eutrophication." IOP Conference Series: Earth and Environmental Science 908, no. 1 (2021): 012009. http://dx.doi.org/10.1088/1755-1315/908/1/012009.

Full text
Abstract:
Abstract We studied freshwater Lake Dikoye located in the coastal zone of Lake Baikal. Negative changes associated with cyanobacterial bloom were observed in the lake. Phototrophs were represented by cyanobacteria, green algae, and diatoms. In the microbial community, Cyanobacteria were the dominant phylum and accounted for up to 48% of the total diversity. Cyanobacteria were represented by 7 genera and 9 species. Microcystis aeruginosa, a potentially toxic species, was dominant among cyanobacteria. According to chlorophyll a content, the lake should be assigned to eutrophic ones. The bacteria
APA, Harvard, Vancouver, ISO, and other styles
43

Barney, Rachael E., Guohong Huang, Torrey L. Gallagher, et al. "Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue." Toxics 11, no. 6 (2023): 531. http://dx.doi.org/10.3390/toxics11060531.

Full text
Abstract:
Cyanobacteria produce a variety of secondary metabolites, including toxins that may contribute to the development of disease. Previous work was able to detect the presence of a cyanobacterial marker in human nasal and broncoalveolar lavage samples; however, it was not able to determine the quantification of the marker. To further research the relationship between cyanobacteria and human health, we validated a droplet digital polymerase chain reaction (ddPCR) assay to simultaneously detect the cyanobacterial 16S marker and a human housekeeping gene in human lung tissue samples. The ability to d
APA, Harvard, Vancouver, ISO, and other styles
44

Jalili, Farhad, Saber Moradinejad, Arash Zamyadi, Sarah Dorner, Sébastien Sauvé, and Michèle Prévost. "Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants." Toxins 14, no. 6 (2022): 410. http://dx.doi.org/10.3390/toxins14060410.

Full text
Abstract:
Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can enhance coagulation e
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Li, An Xiang, Yue Feng, Da Qiao Wei, Heng Yang, and Xue Shan Xia. "Cyanobacteria Diversity in Eutrophic Lake of Yunnan, China." Advanced Materials Research 343-344 (September 2011): 914–19. http://dx.doi.org/10.4028/www.scientific.net/amr.343-344.914.

Full text
Abstract:
Cyanobacteria are widespread in eutrophic freshwater lakes and can produce potent toxins which pose serious risk for human and animal health, aquatic ecosystem sustainability and economic vitality. There are 9 major lakes, which eutrophication and related ecological problem had occurred in most of these lakes in Yunnan, China. In this study, water samples were collected at different sampling time from five freshwater plateau lakes, which located in the middle area of Yunnan province, to assess the cyanobacteria diversity vary with the seasons. The morphological character of cyanobacteria were
APA, Harvard, Vancouver, ISO, and other styles
46

Bothe, Hermann, Oliver Schmitz, M. Geoffrey Yates, and William E. Newton. "Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria." Microbiology and Molecular Biology Reviews 74, no. 4 (2010): 529–51. http://dx.doi.org/10.1128/mmbr.00033-10.

Full text
Abstract:
SUMMARY This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N2 fixation and/or H2 formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium
APA, Harvard, Vancouver, ISO, and other styles
47

Sharipova, M. Yu, and I. Е. Dubovik. "Cyanobacteria and Algae in the Karlamanskaya Cave (Bashkortostan Republic, Russia)." Theoretical and Applied Ecology, no. 1 (March 25, 2024): 184–90. http://dx.doi.org/10.25750/1995-4301-2024-1-184-190.

Full text
Abstract:
The article presents data on the composition and structure of cyanobacterial-algal cenoses of various habitats of the Karlamanskaya Cave. The study identified 46 species and intraspecific taxa of cyanobacteria and algae belonging to 5 divisions (Cyanobacteria – 17 species and intraspecific taxa, Bacillariophyta – 12 species and intraspecific taxa, Chlorophyta – 14 species, Charophyta – 1 species, Ochrophyta – 2 species), 7 classes, 16 order, 28 families and 36 genera. Leptolyngbya boryana (Gom.) Anagn. et Kom., Oscillatoria rupicola (Hansgirg) Hansgirg ex Forti, Luticola mutica (Kütz.) Mann, M
APA, Harvard, Vancouver, ISO, and other styles
48

Puyana, Mónica, Julián Alberto Prato, Christian Felipe Nieto, et al. "Experimental Approaches for the Evaluation of Allelopathic Interactions Between Hermatypic Corals and Marine Benthic Cyanobacteria in the Colombian Caribbean." Acta Biológica Colombiana 24, no. 2 (2019): 243–54. http://dx.doi.org/10.15446/abc.v24n2.72706.

Full text
Abstract:
Blooms of marine benthic cyanobacteria are recurrent in several locations at the Colombian Caribbean. In these events, cyanobacteria grow over the substrate and benthic organisms although their effect has not been fully assessed. This study evaluated interactions between cyanobacteria and hermatypic corals, in order to identify any deleterious effects that could be related to allelopathic mechanisms. Organic extracts from cyanobacteria collected in San Andres, Old Providence and Rosario islands were tested against embryos of the reef-building coral Orbicella annularis. The indirect effect of c
APA, Harvard, Vancouver, ISO, and other styles
49

Zhao, C. S., X. Pan, S. T. Yang, et al. "Drivers of cyanobacterial blooms in lakes and reservoirs in Jinan City, China." Marine and Freshwater Research 71, no. 5 (2020): 626. http://dx.doi.org/10.1071/mf18376.

Full text
Abstract:
Cyanobacterial blooms are a serious issue and frequently occur in lakes and reservoirs. Understanding how topography and human activities affect cyanobacterial dominance and blooms can greatly enhance the success of restoration projects to reduce blooms. Therefore, in this study the dominant species of cyanobacteria were determined by calculating the break point of the cumulative dominance curve for multiple sites in Jinan, China. In addition, the key drivers affecting the dominant cyanobacteria species were identified by canonical correspondence analysis and correlations between topography, h
APA, Harvard, Vancouver, ISO, and other styles
50

Ehrenreich, Ian M., John B. Waterbury, and Eric A. Webb. "Distribution and Diversity of Natural Product Genes in Marine and Freshwater Cyanobacterial Cultures and Genomes." Applied and Environmental Microbiology 71, no. 11 (2005): 7401–13. http://dx.doi.org/10.1128/aem.71.11.7401-7413.2005.

Full text
Abstract:
ABSTRACT Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs an
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!