Academic literature on the topic 'Cycle carbone'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cycle carbone.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cycle carbone"
Bard, Édouard, and Richard Sempéré. "Le cycle du carbone dans l’océan." La lettre du Collège de France, no. 40 (September 2, 2015): 38–39. http://dx.doi.org/10.4000/lettre-cdf.2102.
Full textFriedlingstein, Pierre, Laurent BOPP, and Patricia CADULE. "Changement climatique et cycle du carbone." La Météorologie 8, no. 58 (2007): 21. http://dx.doi.org/10.4267/2042/18204.
Full textSchlamadinger, Bernhard, Lorenza Canella, Gregg Marland, and Josef Spitzer. "Bioenergy strategies and the global carbon cycle. / Stratégies bioénergétiques et cycle global du carbone." Sciences Géologiques. Bulletin 50, no. 1 (1997): 157–82. http://dx.doi.org/10.3406/sgeol.1997.1951.
Full textViovy, Nicolas, and Nathalie de Noblet. "Coupling water and carbon cycle in the biosphere. / Couplage du cycle de l'eau et du carbone dans la biosphère." Sciences Géologiques. Bulletin 50, no. 1 (1997): 109–21. http://dx.doi.org/10.3406/sgeol.1997.1948.
Full textSéférian, Roland, Matthias Rocher, Nicolas Metzl, and Philippe Ciais. "Évolution récente du cycle du carbone planétaire : facteurs humains et naturels." La Météorologie 8, no. 93 (2016): 3. http://dx.doi.org/10.4267/2042/59931.
Full textDOLLÉ, J. B., J. AGABRIEL, J. L. PEYRAUD, P. FAVERDIN, V. MANNEVILLE, C. RAISON, A. GAC, and A. LE GALL. "Les gaz à effet de serre en élevage bovin : évaluation et leviers d'action." INRAE Productions Animales 24, no. 5 (December 8, 2011): 415–32. http://dx.doi.org/10.20870/productions-animales.2011.24.5.3275.
Full textBrioude, J., J. P. Cammas, and O. R. Cooper. "Stratosphere-troposphere exchange in a summertime extratropical low: analysis." Atmospheric Chemistry and Physics Discussions 5, no. 6 (November 29, 2005): 12465–503. http://dx.doi.org/10.5194/acpd-5-12465-2005.
Full textBorrelly, R., I. Biron, P. Delaneau, and B. J. Thomas. "Dosage du carbone en solution dans les aciers extra-doux par mesure du pouvoir thermoélectrique. Application à la détermination des teneurs en carbone en solution à différentes étapes d’un cycle de recuit continu." Revue de Métallurgie 90, no. 5 (May 1993): 685–96. http://dx.doi.org/10.1051/metal/199390050685.
Full textBrion, N., and G. Billen. "Une réévaluation de la methode d'incorporation de H14C03- pour mesurer la nitrification autotrophe et son application pour estimer des biomasses de bactéries nitrifiantes." Revue des sciences de l'eau 11, no. 2 (April 12, 2005): 283–302. http://dx.doi.org/10.7202/705308ar.
Full textMulkerin, Daniel L., Jason J. Bergsbaken, Jessica A. Fischer, Mary J. Mulkerin, Aaron M. Bohler, and Mary S. Mably. "Multidisciplinary Optimization of Oral Chemotherapy Delivery at the University of Wisconsin Carbone Cancer Center." Journal of Oncology Practice 12, no. 10 (October 2016): e912-e923. http://dx.doi.org/10.1200/jop.2016.013748.
Full textDissertations / Theses on the topic "Cycle carbone"
Cachier-Rivault, Hélène. "Approche isotopique du cycle atmospherique du carbone particulaire." Paris 7, 1987. http://www.theses.fr/1987PA077061.
Full textBarral, Cuesta Abel. "The carbon isotope composition of the fossil conifer Frenelopsis as a proxy for reconstructing Cretaceous atmospheric CO2." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1148.
Full textThe Cretaceous was a period characterized by strongly marked climate change and major carbon cycle instability. Atmospheric CO2 has repeatedly been pointed out as a major agent involved in these changing conditions during the period. However, long-term trends in CO2 described for the Cretaceous are not consistent with those of temperature and the large disturbance events of the carbon cycle described for the period. This raises a double question of whether descriptions of the long-term evolution of atmospheric CO2 made so far are accurate or, if so, atmospheric CO2 was actually a major driver of carbon cycle and climate dynamics as usually stated. In this thesis the close relationship between the carbon isotope composition of plants and atmospheric CO2 is used to address this question. Based on its ecological significance, distribution, morphological features and its excellent preservation, the fossil conifer genus Frenelopsis is proposed as a new plant proxy for climate reconstructions during the Cretaceous. The capacity of carbon isotope compositions of Frenelopsis leaves (d13Cleaf) to reconstruct past atmospheric CO2, with regards to both carbon isotope composition (d13CCO2) and concentration (pCO2), is tested based on materials coming from twelve Cretaceous episodes. To provide a framework to test the capacity of d13Cleaf to reconstruct d13CCO2 and allowing for climate estimates from carbon isotope discrimination by plants (?13Cleaf), a new d13CCO2 curve for the Cretaceous based on carbon isotope compositions of marine carbonates has been constructed. Comparison with d13Cleaf-based d13CCO2 estimates reveals that although d13CCO2 and d13Cleaf values follow consistent trends, models developed so far to estimate d13CCO2 from d13Cleaf tend to exaggerate d13CCO2 trends because of assuming a linear relationship between both values. However, given the hyperbolic relationship between ?13Cleaf and pCO2, by considering an independently-estimated correction factor for pCO2 for a given episode, d13Cleaf values may be a valuable proxy for d13CCO2 reconstructions. ?13Cleaf estimates obtained from d13CCO2 and d13Cleaf values were used to reconstruct the long-term evolution of pCO2. The magnitude of estimated pCO2 values is in accordance with that of the most recent and relevant model- and proxy-based pCO2 reconstructions. However, these new results evidence long-term drawdowns of pCO2 for Cretaceous time intervals in which temperature maxima have been described
Piccoli, Francesca. "High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066448/document.
Full textThe balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales
Cachier-Rivault, Hélène. "Approche isotopique du cycle atmosphérique du carbone particulaire." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376035474.
Full textTounsi, Khoudhir. "Le cycle du carbone dans l'Océan atlantique tropical." Toulouse 3, 1990. http://www.theses.fr/1990TOU30233.
Full textLabbe, Espéret Christiane. "Modélisation et conceptualisation : l'exemple du cycle du carbone." La Réunion, 2002. http://elgebar.univ-reunion.fr/login?url=http://thesesenligne.univ.run/02_07_Labbe_Esp.pdf.
Full textMaffre, Pierre. "Interactions entre tectonique, érosion, altération des roches silicatées et climat à l'échelle des temps géologiques : rôle des chaînes de montagnes." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30287.
Full textThis thesis explores how orogenies may affect the Earth climate through the quantification of the interactions between climate dynamics, continental erosion, silicate rock weathering rate and geological carbon cycle. The first chapter describes the mechanisms linking the continental topography and its impacts on the atmospheric and oceanic circulations, with emphasis on the thermohaline circulation. The second chapter compares the effects on continental weatherability of climate dynamics and erosional changes related to the presence of mountains. The third chapter describes a dynamic model of regolith designed for global scale simulations, and describes its transient behavior, as well as its response to a CO2 degassing. Finally, the last chapter presents a numerical model of the continental isotopic cycle of lithium, so that its reliability as a proxy of the past weathering can be tested. The model explores the case study of the Amazon lithium cycle
Mariotti, Véronique. "Le cycle du carbone en climat glaciaire : état moyen et variabilité." Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0071.
Full textAtmospheric CO2 variations, of around 100 ppm, between glacial and interglacial climates, and 14C variations, are not well understood. This is also the case for the 20 ppm variations of CO2 associated to abrupts events at glacial times. Combining both models and data, I have shown (1) that the sinking of brines mechanism - pockets of salt rejected by sea-ice formation - around Antarctica, likely able to explain glacial-interglacial CO2 variations according to previous studies, could also explain the 14C, (2) that an oscillation of this mechanism could also induce the 20 ppm variations of CO2, during abrupt events, (3) that marine productivity was correctly simulated on the glacial-interglacial time scale and during abrupts events and (4) that for both kinds of variations, it had a limited role on CO2
Bouttes, Nathaëlle. "L’évolution du cycle du carbone au cours du Quaternaire." Paris 6, 2010. http://www.theses.fr/2010PA066376.
Full textCrichton, Katherine. "The role of permafrost soils in the global carbon-cycle on the timescales of centuries to multi-millennia : a modelling study." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU049/document.
Full textThis study aimed to develop a permafrost-carbon dynamic model to incorporate into the CLIMBER-2 Earth system model and to carry out simulations with a view to contributing to the knowledge of the carbon cycle. The work would, for the first time, allow a fully coupled modelling study with an earth system model which included dynamic atmosphere, ocean, vegetation and cryosphere components including frozen land to study paleoclimates. The availability of recent ice core data for CO2 and δ13C of atmospheric CO2 was to provide a means of validating model findings to identify whether a permafrost-carbon dynamic could have played a significant role in past changing climates.The deep Southern Ocean is an area of particular interest for glacial-interglacial CO2 variability, and current modelling efforts aim to recreate the observed CO2 changes using ocean mechanisms. These are often related to deep southern ocean carbon storage and release. So far the terrestrial biosphere has not been well-considered in transient simulations of the carbon cycle in Earth system models.A simplified permafrost-carbon mechanism was developed and validated and tuned using data from termination 1. It was found that in order to reproduce atmospheric CO2 and δ13C data (for atmosphere and ocean) during the termination, a combination of glacial ocean mechanisms and the permafrost-carbon mechanism was required. Following this finding, several glacial cycles were modelled to study the sensitivity of the permafrost-carbon mechanisms to CO2, ice sheets and insolation. Ice sheet extent was found to be particularly important in controlling the land area available for permafrost and therefore the carbon dynamics of permafrost-carbon. The permafrost-carbon mechanism, via carbon release from thawing soils responding to increasing summer insolation in higher northern latitudes, was found to very likely be the source of initial rises in CO2 on glacial terminations.Termination 1 CO2 data could be well reproduced, including the B-A/YD CO2 plateau, when fresh water forcing was applied to the north Atlantic. Fresh water forcing experiments pointed to the importance of the permafrost-carbon mechanism in fast changing climates. Very fast increases in atmospheric CO2 levels may be explained by fast soil-carbon release responding to increased heat transport to the northern hemisphere on AMOC resumption following an AMOC switch-off/reduction event, such as D/O events seen in the Greenland δ18O record. Future climate change projections represent fast warming events. Driving the model by emissions projections (RCP database) predicted increased peak CO2 and much longer term elevated CO2 levels relative to model outputs which did not include the permafrost carbon feedback.Analysis of ocean δ13C must take into account the dynamics of permafrost and land carbon in general and its effect on atmospheric δ13C levels. If this is not taken into account then ocean circulation may be over-invoked in attempting to explain changes in ocean δ13C and atmospheric CO2. The Earth system is not simply atmosphere and ocean. The findings in this work highlight that it is essential to consider land carbon dynamics when interpreting paleo-indicators for the carbon cycle.The permafrost-carbon mechanism reacts to temperature changes and amplifies the carbon cycle's response. It is stongly dependent not only on energy input (that determines soil temperature and permafrost location), but also on the area of land available globally on which it can exist. In order to properly model and understand the Earth system response to forcing in both future and past climates, the permafrost-carbon feedback mechanism is an important system component. This work has been a first step to address the role that the land cryosphere plays in the carbon cycle and climate system on long timescales, and further studies are essential
Books on the topic "Cycle carbone"
International Boreal Forest Research Association. Conference. The role of boreal forests and forestry in the global carbon budget: Proceedings. Edited by Shaw Cindy 1956-, Apps Michael J, and Northern Forestry Centre (Canada). Edmonton: Canadian Forest Service, Northern Forestry Centre, 2002.
Find full textSmyth, C. E. Decreasing uncertainty in CBM-CFS3 estimates of forest soil carbon sources and sinks through use of long-term data from the Canadian Intersite Decomposition Experiment. Victoria, B.C: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 2010.
Find full textSlade, Suzanne. The carbon cycle. New York: Rosen Pub. Group's PowerKids Press, 2007.
Find full textNATO, Advanced Study Institute on the Contemporary Global Carbon Cycle (1991 Il Cioccio Italy). The global carbon cycle. Berlin: Springer-Verlag in association with NATO Scientific Affairs Division, 1993.
Find full textHeimann, Martin, ed. The Global Carbon Cycle. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84608-3.
Full textTrabalka, John R., and David E. Reichle, eds. The Changing Carbon Cycle. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-1915-4.
Full textMick, Follows, Oguz Temel, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. The ocean carbon cycle and climate. Dordrecht: Kluwer Academic Publishers, 2004.
Find full textBook chapters on the topic "Cycle carbone"
Canuel, Elizabeth A., and Amber K. Hardison. "Carbon Cycle." In Encyclopedia of Earth Sciences Series, 191–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_175.
Full textCanuel, Elizabeth A., and Amber K. Hardison. "Carbon Cycle." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_175-1.
Full textReitner, Joachim, and Volker Thiel. "Carbon Cycle." In Encyclopedia of Geobiology, 238. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_47.
Full textGooch, Jan W. "Carbon Cycle." In Encyclopedic Dictionary of Polymers, 880. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13315.
Full textBush, Martin J. "The Carbon Cycle." In Climate Change and Renewable Energy, 109–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15424-0_3.
Full textSteele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna, et al. "Carbon Cycle Research." In Encyclopedia of Parallel Computing, 220. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2398.
Full textBopp, Laurent, and Corinne Le Quéré. "Ocean carbon cycle." In Surface Ocean—Lower Atmosphere Processes, 181–95. Washington, D. C.: American Geophysical Union, 2009. http://dx.doi.org/10.1029/2008gm000780.
Full textEllis-Evans, J. Cynan. "Carbon Cycle, Biological." In Encyclopedia of Astrobiology, 364–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_82.
Full textGoudriaan, J. "Global Carbon Cycle." In Climate Change and Rice, 207–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-85193-3_20.
Full textEllis-Evans, J. Cynan. "Carbon Cycle, Biological." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_82-3.
Full textConference papers on the topic "Cycle carbone"
Zietlow, Douglas. "Synthetic Coal Cycle Technology™ : A Novel Carbon Utilization Technology." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2015. http://dx.doi.org/10.7122/440179-ms.
Full textLaakso, Thomas A., and Daniel P. Schrag. "METHANOTROPHY, AUTHIGENIC CARBONATE, AND THE NEOPROTEROZOIC CARBON CYCLE." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307472.
Full textRobson, Wishart, Terry Killian, and Robert Siveter. "Life-Cycle Greenhouse Gas Emissions of Transportation Fuels: Issues and Implications for Unconventional Fuel Sources." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2012. http://dx.doi.org/10.7122/151326-ms.
Full textChacartegui, R., D. Sa´nchez, F. Jime´nez-Espadafor, A. Mun˜oz, and T. Sa´nchez. "Analysis of Intermediate Temperature Combined Cycles With a Carbon Dioxide Topping Cycle." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51053.
Full textYUAN, DAOXIAN. "CARBON CYCLE IN KARST PROCESSES." In International Seminar on Nuclear War and Planetary Emergencies 42nd Session. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327503_0035.
Full textKnapp, Will, Emily Stevenson, and Edward Tipper. "A Trapdoor in the Carbon Cycle: The Global Implications of Riverine Carbonate Chemistry." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1338.
Full textMarassi, Stefania, Marco Limongi, Alessandro Chieffi, and Raffaella Schneider. "Population III Supernovae and the elemental composition of carbon-normal and carbon-enhanced." In The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.207.0089.
Full textVesely, Ladislav, and Vaclav Dostal. "Effect of Multicomponent Mixtures on Cycles With Supercritical Carbon Dioxide." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64044.
Full textGkountas, Apostolos A., Anastassios M. Stamatelos, and Anestis I. Kalfas. "Thermodynamic Modeling and Comparative Analysis of Supercritical Carbon Dioxide Brayton Cycle." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63990.
Full textMcClung, Aaron, Klaus Brun, and Jacob Delimont. "Comparison of Supercritical Carbon Dioxide Cycles for Oxy-Combustion." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42523.
Full textReports on the topic "Cycle carbone"
Diane Wickland. Carbon Cycle Interagency Working Group. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/909700.
Full textTrabalka, J. Atmospheric carbon dioxide and the global carbon cycle. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6048470.
Full textCooper, J. F., N. Cherepy, R. Upadhye, A. Pasternak, and M. Steinberg. Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/15007473.
Full textBruhwiler, L., A. M. Michalak, R. Birdsey, D. N. Huntzinger, J. B. Fisher, and J. Miller. Chapter 1: Overview of the Global Carbon Cycle. Second State of the Carbon Cycle Report. Edited by R. A. Houghton, N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch1.
Full textBorenstein, Severin. Markets for Anthropogenic Carbon Within the Larger Carbon Cycle. Cambridge, MA: National Bureau of Economic Research, June 2010. http://dx.doi.org/10.3386/w16104.
Full textMoisseytsev, A., and J. J. Sienicki. Supercritical carbon dioxide cycle control analysis. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1011299.
Full textHuntzinger, D. N., A. Chatterjee, D. Moore, S. Ohrel, T. O. West, B. Poulter, A. Walker, et al. Chapter 19: Future of the North American Carbon Cycle. Second State of the Carbon Cycle Report. Edited by R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch19.
Full textWest, T. O., N. Gurwick, M. E. Brown, R. Duren, S. Mooney, K. Paustian, E. McGlynn, et al. Chapter 18: Carbon Cycle Science in Support of Decision Making. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch18.
Full textDouglas, Thomas A., Christopher A. Hiemstra, Miriam C. Jones, and Jeffrey R. Arnold. Sources and Sinks of Carbon in Boreal Ecosystems of Interior Alaska : A Review. U.S. Army Engineer Research and Development Center, July 2021. http://dx.doi.org/10.21079/11681/41163.
Full textCavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu, eds. Second State of the Carbon Cycle Report. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.
Full text