Academic literature on the topic 'Cyclodextrins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cyclodextrins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cyclodextrins"

1

Pashupati Nath Sharma, Pashupati Nath Sharma. "A Study of Hydroxypropyl Α-Cyclodextrin and Α-Cyclodextrin Inclusion Complexity". Journal of Advances and Scholarly Researches in Allied Education 19, № 3 (1 квітня 2022): 5–10. https://doi.org/10.29070/ag4ehh15.

Full text
Abstract:
Cyclodextrins are generated with a range of readily available enzymes for the treatment of ordinary starch. Along with amylase, cyclodextrin glycosylotransferase is commonly used. The first is to liquify starch by thermal treatment or amylase and add CGTase to the enzyme conversion. The synthesis of all three types of cyclodextrins is possible at ratios that depend strictly on the enzyme used. Each CGTase has an independent synthesis relationship. Cyclodextrins are filtered according to their different water solubility CDs that are very poorly water-soluble can be easily crystallised while the more soluble - and -CDs (145 and 232 gl) normally cleaned using chromatographic techniques. Alternatively, during the enzymatic conversion, a complexing agent may be added to form a complex with the desired cyclodextrin (usually organic solvents such as toluene, acetone or ethenol). The complex formation contributes to the conversion of starch to a precipitate cyclodextrin's synthesis and hence increases the content of the final product mix. Cyclodextrins Extracting amylase starch from Bacillus macerans results in a crude cyclodextrin mixture. There were some other linear and ramified dextrins in the mix along with small quantities of proteins and other impurities. Dramatic changes to their efficiency were attributed to biotechnological advancement in the 1970s. Various forms of CGTases made by evolution have been used to produce cyclodextrins more active and precise than previously used enzymes. Along with other technical advances, these enzymes developed highly purified cyclodextrin which can be used as drugs.
APA, Harvard, Vancouver, ISO, and other styles
2

Labes, Antje, and Peter Schönheit. "Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324." Journal of Bacteriology 189, no. 24 (October 5, 2007): 8901–13. http://dx.doi.org/10.1128/jb.01136-07.

Full text
Abstract:
ABSTRACT The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.
APA, Harvard, Vancouver, ISO, and other styles
3

Bansal, Paramjit S., Craig L. Francis, Noel K. Hart, Scott A. Henderson, David Oakenfull, Alan D. Robertson та Gregory W. Simpson. "Regioselective Alkylation of β-Cyclodextrin". Australian Journal of Chemistry 51, № 10 (1998): 915. http://dx.doi.org/10.1071/c98064.

Full text
Abstract:
Methodology for preparation of heptakis(2,6-di-O-alkyl)-β-cyclodextrins, heptakis(2-O-alkyl)-β- cyclodextrins, and heptakis(6-O-alkyl)-β-cyclodextrins in substantially purified form has been developed. Treatment of β-cyclodextrin (1) with sodium or barium hydroxide and various alkyl halides in dimethyl sulfoxide or a mixture of dimethyl sulfoxide and N,N-dimethylformamide provided the corresponding heptakis(2,6-di-O-alkyl)-β-cyclodextrins. Treatment of heptakis(6-O-t-butyldimethylsilyl)-β-cyclodextrin (5) with sodium hydroxide and several haloalkanes in dimethyl sulfoxide followed by desilylation provided heptakis(2-O-alkyl)-β-cyclodextrins. Protection of the secondary hydroxy groups of the t-butyldimethylsilyl-β-cyclodextrin (5) as benzyl ethers, followed by desilylation, alkylation, and debenzylation afforded several heptakis(6-O-alkyl)-β-cyclodextrins. Analytical methodology has been developed to characterize all of these compounds, with the homogeneity of the pattern of substitution verified by h.p.l.c. analysis, f.a.b.–mass spectrometry and n.m.r. spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Runmiao, Hui Zhou, Shirley W. I. Siu, Yong Gan, Yitao Wang, and Defang Ouyang. "Comparison of Three Molecular Simulation Approaches for Cyclodextrin-Ibuprofen Complexation." Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/193049.

Full text
Abstract:
Cyclodextrins are widely used for the solubilisation of poorly soluble drugs in the formulations. However, current cyclodextrin formulation development strongly depends on trial-and-error in the laboratory, which is time-consuming and high cost. The aim of this research was to compare three modeling approaches (Docking, molecular dynamics (MD), and quantum mechanics (QM)) for cyclodextrin/drug complexation. Ibuprofen was used as a model drug. Binding free energy from three simulation methods was calculated as an important parameter to compare with the experimental results. Docking results from AutoDock Vina program showed that the scoring of complexation capability between ibuprofen and cyclodextrins is alpha (α), gamma (γ), beta (β), and HP-beta-cyclodextrins, which indicated similar ranking with the results from phase, solubility diagram experiments. MD simulation indicated that ibuprofen could form the stable complexes withβ-,γ-, and HP-β-cyclodextrins, but not for alpha cyclodextrin. Binding free energies from the MD simulation forβ-,γ-, and HP-β-cyclodextrins were −3.67, −0.67, and −3.87 kcal/mol, individually. The enthalpies of QM simulation forβ-,γ-, and HP-β-cyclodextrins were −17.22, −14.75, and −20.28 kcal/mol, respectively. Results from all three modeling approaches showed similar ranking between ibuprofen and four cyclodextrin molecules as the experimental data. However, MD simulation with entropy calculation had the closest value to experimental data forβand HP-beta-cyclodextrins. Thus, MD simulation with MM-PBSA method may be fit toin silicoscreen for cyclodextrin formulations.
APA, Harvard, Vancouver, ISO, and other styles
5

Easton, Christopher J., Steven J. van Eyk, Stephen F. Lincoln, Bruce L. May, John Papageorgiou, and Michael L. Williams. "A Versatile Synthesis of Linked Cyclodextrins." Australian Journal of Chemistry 50, no. 1 (1997): 9. http://dx.doi.org/10.1071/c96168.

Full text
Abstract:
Reactions of amino-substituted cyclodextrins with bis(3-nitrophenyl) oxalate, malonate, succinate and glutarate, and with diphenyl carbonate, afford a range of linked cyclodextrins. These include α- and β-cyclodextrin dimers, joined by substitution at either C6 or C3, and asymmetric species with a β-cyclodextrin bonded to an a-cyclodextrin and a C3-substituted cyclodextrin attached to a C6-substituted moiety.
APA, Harvard, Vancouver, ISO, and other styles
6

Castillo Cruz, Betzaida, Sandra Chinapen Barletta, Bryan G. Ortiz Muñoz, Adriana S. Benitez-Reyes, Omar A. Amalbert Perez, Alexander C. Cardona Amador, Pablo E. Vivas-Mejia, and Gabriel L. Barletta. "Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium." Pharmaceuticals 17, no. 10 (October 8, 2024): 1344. http://dx.doi.org/10.3390/ph17101344.

Full text
Abstract:
Background: Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome’s fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. Methods: We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. Results: We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. Conclusions: β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules.
APA, Harvard, Vancouver, ISO, and other styles
7

Lavandier, CD, MP Pelletier та VC Reinsborough. "Surfactant Inclusions by Modified β-Cyclodextrins". Australian Journal of Chemistry 44, № 3 (1991): 457. http://dx.doi.org/10.1071/ch9910457.

Full text
Abstract:
Binding constants for the inclusion of sodium alkane-1-sulfonates (C5-C10, C12) by four modified β- cyclodextrins (2,6-O-dimethyl-β-cyclodextrin, 2,3,6-O-trimethyl-β-cyclodextrin, hydroxypropyl-β-cyclodextrin and maltosyl-β-cyclodextrin ) were determined conductimetrically at 25°C. Binding increased with increasing length of the alkyl chain. Generally, the substituted β- cyclodextrins were no more effective as encapsulating agents than ordinary β- cyclodextrin with the persubstituted 2,3,6-O-trimethyl-β-cyclodextrin being the weakest.
APA, Harvard, Vancouver, ISO, and other styles
8

Fenyvesi, Ferenc. "Biological Studies on Cyclodextrins." Proceedings 78, no. 1 (December 1, 2020): 60. http://dx.doi.org/10.3390/iecp2020-08692.

Full text
Abstract:
In recent years, our knowledge of the biological effects of cyclodextrins has grown significantly. Cellular actions of cyclodextrins originate in their ability to form complexes with lipophilic biomolecules. Cyclodextrins can target different types of molecules according to their size, for instance, alpha-cyclodextrins form complexes with phospholipids, while beta-cyclodextrins can bind cholesterol or prostaglandin E2. Due to their interactions with the main membrane constituents, cyclodextrins can affect the barrier function of biological barriers or influence the function of membrane proteins. Nevertheless, cyclodextrins can enter the cells by endocytosis and affect the intracellular cholesterol storage. Based on these findings, 2-hydroxypropyl-beta cyclodextrin (HPBCD) received the orphan designation for the treatment of Niemann–Pick disease type C. The endocytosis of cyclodextrins works in different cell types and can be applied in the delivery of drugs into the cells. The tissue distribution and pharmacokinetics of cyclodextrins could be further characterized by imaging techniques. Radiolabeled HPBCD and randomly methylated beta-cyclodextrin (RAMEB) were recently used to study their in vivo behavior by positron emission tomography. Interestingly, RAMEB accumulation was detected in prostaglandin E2 (PGE2)-positive tumors. These findings can promote further research and the application of cyclodextrins in inflammation and tumor diagnosis or targeting. The presentation aims to give an overview of the main biological effects of cyclodextrins and the recent results of this research field.
APA, Harvard, Vancouver, ISO, and other styles
9

S. Panwar, Vikas, Lokesh Adhikari, Mona Semalty, and Ajay Semalty. "DRUG-CYCLODEXTRIN COMPLEXES: CURRENT STATUS AND RECENT ADVANCEMENTS." INDIAN DRUGS 60, no. 10 (October 28, 2023): 7–18. http://dx.doi.org/10.53879/id.60.10.12952.

Full text
Abstract:
Cyclodextrins are water-soluble oligosaccharides formed by the action of cyclodextrin glucosyl transferase enzyme (CGTase) on the medium containing starch. Cyclodextrins are proven to be a cost-effective breakthrough in the pharmaceutical industry by formulating them with polymers and drugs to improve the safety, bioavailability, and solubility of APIs. This review describes the current status and advancement of cyclodextrin research in drug delivery. The use of cyclodextrins to improve the solubility and dissolution properties of poor water-soluble products has been reviewed exhaustively with a specific focus on their physicochemical property, practical methods, toxicity, the drug-cyclodextrin compatibility and its applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Yhaya, Firdaus, Andrew M. Gregory, and Martina H. Stenzel. "Polymers with Sugar Buckets - The Attachment of Cyclodextrins onto Polymer Chains." Australian Journal of Chemistry 63, no. 2 (2010): 195. http://dx.doi.org/10.1071/ch09516.

Full text
Abstract:
This Review summarizes the structures obtained when marrying synthetic polymers of varying architectures with cyclodextrins. Polymers with cyclodextrin pendant groups were obtained by directly polymerizing cyclodextrin-based monomers or by postmodification of reactive polymers with cyclodextrins. Star polymers with cyclodextrin as the core with up to 21 arms were usually obtained by using modified cyclodextrins as initiator or controlling agent. Limited reports are available on the synthesis of star polymers by arm-first techniques, which all employed azide-functionalized cyclodextrin and ‘click’ chemistry to attach seven polymer arms to the cyclodextrin core. Polymer chains with one or two cyclodextrin terminal units were reported as well as star polymers carrying a cyclodextrin molecule at the end of each arm. Cyclodextrin polymers were obtained using different polymerization techniques ranging from atom transfer radical polymerization, reversible addition–fragmentation chain transfer polymerization, nitroxide-mediated polymerization, free radical polymerization to (ionic) ring-opening polymerization, and polycondensation. Cyclodextrin polymers touch all areas of polymer science from gene delivery, self-assembled structures, drug carriers, molecular sensors, hydrogels, and liquid crystalline polymers. This Review attempts to focus on the range of work conducted with polymers and cyclodextrins and highlights some of the key areas where these macromolecules have been applied.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cyclodextrins"

1

Nemeth, Richard Desider. "Linked Beta-Cyclodextrins." W&M ScholarWorks, 1988. https://scholarworks.wm.edu/etd/1539625449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Enxu. "Design of molecular Brownian ratchets exploiting the asymmetry of functionalized cyclodextrins." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS654.pdf.

Full text
Abstract:
Au cours des dernières années, les avancées dans le domaine des machines moléculaires ont été remarquables. Néanmoins, la réalisation d'un mouvement unidirectionnel contrôlé au sein de ces nanostructures reste compliquée. L'objet de cette thèse est d'exploiter l'asymétrie intrinsèque de la cyclodextrine (CD) pour développer des machines moléculaires capables de réaliser un mouvement unidirectionnel. Une série de [2]rotaxanes, comportant une α-CD perméthylée simple ou fonctionnalisée avec une amine sur le col primaire a été synthétisée.Dans une première partie, un mécanisme de cliquet d'information a été mis au point sur un [2]rotaxane de CD perméthylée. Il a été observé que la cinétique de protection de l'axe par des groupements Fmoc dépend de l'orientation et de la position de la CD. Ces données suggèrent que la forme conique asymétrique du macrocycle instaure un mécanisme original de type cliquet d'information, ouvrant des perspectives pour la conception de moteurs moléculaires de nouvelle génération.Dans une seconde partie, l'introduction d'une fonction diméthylamine sur le col primaire de la CD du [2]rotaxane a été réalisée. Cette modification vise à catalyser la déprotection intramoléculaire du groupement Fmoc devant le col primaire de la CD. Ce hypothèse a été optimisé sur un système de [2]rotaxane modèle. Un mouvement unidirectionnel à travers un processus cyclique de protection et de déprotection du Fmoc semble accessible. Ces résultats démontrent l'intérêt de la construction des moteurs moléculaires avec des CD fonctionnalisées<br>Over recent years, molecular machines have been widely developed, yet mastering unidirectional movement in these nano-entities remains challenging. This thesis focuses on harnessing the inherent asymmetry of cyclodextrin (CD) to design molecular machines that are able to perform unidirectional motion. A range of [2]rotaxanes, incorporating methylated α-CD, either amine-functionalized at the primary rim or permethylated was synthesized.In the first part, an information ratchet system was discovered on a permethylated α-CD [2]rotaxane. The kinetics of the Fmoc protection of the axle are influenced by the CD's orientation and position. These findings suggest that the asymmetric conical shape of the macrocycle establishes a unique information ratchet mechanism, paving the way for the design of next-generation molecular motors.In the second part, the introduction of a dimethylamine function on the primary rim of the CD of the [2]rotaxane was carried out. This modification aims to catalyze the intramolecular deprotection of the Fmoc group faces to the primary rim of the CD. This hypothesis was optimized on a model [2]rotaxane system. A unidirectional movement through a cyclic process of protection and deprotection of the Fmoc appears feasible. These results highlight the potential of building molecular motors with functionalized CDs
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, Susan Elizabeth. "Molecular recognition by cyclodextrins /." Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phb8798.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yan, Jinglan. "Sulfated ß-cyclodextrins in enantiomeric separations and mobility conservation model in cyclodextrin-mediated capillary electrophoresis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ35009.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haskard, Carolyn Anne. "Multiple recognition by modified cyclodextrins." Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phh349.pdf.

Full text
Abstract:
Copy of author's previously published article inserted. Includes bibliographies This thesis studies the B-cyclodextrins which are modified at the primary rim to incorporate an additional coordination or hydrophobic recognition site. The natural organic host, cyclodextrin and its chemically modified derivatives, are utilised as hosts for the inclusion of a range of guests. The study contributes to understanding the fundamental factors influencing selectivity of binding and the stability of the complexes formed when a guest is bound essentially at two recognition sites.
APA, Harvard, Vancouver, ISO, and other styles
6

Kean, Suzanna Dawn. "Modified cyclodextrins and their complexes." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phk243.pdf.

Full text
Abstract:
Addendum page pasted onto front end paper. Copies of author's previously published articles inserted. Includes bibliographical references. Investigates the factors that govern the stability of cyclodextrin inclusion complexes with a range of systematically modified cyclodextrins.
APA, Harvard, Vancouver, ISO, and other styles
7

Palmer, Simon Richard Faunch. "Electroanalytical sensors using lipophilic cyclodextrins." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4753/.

Full text
Abstract:
Lipophilic dialkylated-a-, β- and γ-cyclodextrin derivatives were used as selective ionophores for a series of clinically relevant ammonium ions, and as enantioselective ionophores for both a- and β-aryl ammonium ions. Sensitive and selective potentiometric detection of the local anaesthetics lidocaine and bupivacaine was achieved by using 2,3,6 trioctyl-β-cyclodextrin as the ionophore, leading to micromolar detection limits. Interference studies showed that the simulated clinical electrolyte background caused minimal interference whereas organic interferents of similar size and charge caused some perturbation of the electrode response at a concentration of 10 mmol dm(^-3). An electrode comprising a plasticized biocompatible membrane matrix, TECOFLEX, with 2,6 didodecyl-β-cyclodextrin was incorporated in a flow injection analysis system and the response to lidocaine studied in the presence of human serum. Human serum caused no adverse effects to the electrochemical response of the electrode. These electrodes are, therefore, very suitable for on-line detection of local anaesthetics. Potentiometric detection of tricyclic antidepressants using didodecyl-a-, β- and γ- cyclodextrins as the ionophore, gave micromolar detection limits. Interference from simulated clinical electiolyte background and selected organic interferents gave similar results to those discussed above. In order to lower the detection limit to sub-nanomolar levels modified amperometric electrodes were assembled by depositing a membrane comprising plasticised TECOFLEX, 2,3,6 triethyl-β-cyclodextrin and TKB on the working electrode of a screen printed electrode. Lipophilic 2,6 didodecyl-a- and β-cyclodextrins exhibited enantiomeric discrimination in the binding of propranolol, ephedrine, amphetamine and methamphetamine. These results were confirmed using potentiometric and NMR techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, S. P. "Interaction of drugs with cyclodextrins." Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De, Vries Elise Janine Christl. "Inclusion of alkylparabens in cyclodextrins." Doctoral thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/6302.

Full text
Abstract:
Includes bibliographical references.<br>The aim of this thesis was to prepare crystalline inclusion complexes with cyclodextrins (CDs), as hosts, and drugs, as guests, characterise them using various methods and attempt to elucidate their structures by X-ray diffraction methods to establish the detailed mode of drug inclusion in the solid state. Cyclodextrins and their derivatives have a low polarity central void formed by linked glucose residues of varying numbers. This annular cavity is able to encapsualte low molecular weight molecules and is therefore responsible for the great interest in CDs in host-guest chemistry. In addition, inclusion of drug molecules in cyclodextrins can significantly improve aspects of their performance, such as increased aqueous solubility and dissolution rates which lead to their increasing application in the pharmaceutical industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Derbali, Meftah Abdulhafied. "Formulation and evaluation of zidovudine cyclodextrin inclusion complex to enhance acid lability and palatability." University of the Western Cape, 2016. http://hdl.handle.net/11394/5052.

Full text
Abstract:
Magister Pharmaceuticae - MPharm<br>Background: Zidovudine (AZT) is a very useful drug for the management of Human Immunodeficiency Virus (HIV) infection. Its optimal use is limited by its bitter taste, sparing solubility (20.1 mg/ml) and acid lability. Cyclodextrins (CD) are a class of compounds which can be used to form inclusion complexes with drugs such as AZT to improve it is taste, solubility and palatability. Purpose: This study complexed hydroxypropyl-beta-cyclodextrin (HPβCD) with AZT. The formulated inclusion complex was evaluated for suitability as a dosage form and as a tool for improving AZT’s palatability, solubility and acid liability. Method: AZT was complexed with HPβCD using the lyophilisation method. The binding constant for the formulation was determined by the phase solubility method, and complex formation between AZT and HPβCD evaluated using proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and hot stage microscopy (HSM). Tablets of the inclusion complex were formulated by direct compression, using the least possible amount of excipients, and the dosage form evaluated for hardness, friability, durability, disintegration time and dissolution. Results: The binding constant of the formulation was 3.919, and the degree of incorporation was 4.0 mg AZT/g of CD per complex. 1H NMR showed significant chemical shifts between the inclusion complex and AZT. DSC and TGA analyses showed significant differences in the curves for the pure AZT and HPβCD. Values for tablet hardness, friability, durability and disintegration time were 236 ± 20 N, 0.7 %, 1.02 % and 10.25 minutes, respectively. The solubility of the formulation was 148.08 mg/ml, and its dissolution profile was different from that of the branded formulation. Conclusions: AZT-HPβCD inclusion complex, with a 7.4-fold increase in AZT solubility, was successfully prepared using the lyophilisation method. The binding constant and friability of the formulation were within acceptable limits. Although the hardness value is high, the tablet still disintegrated within acceptable specified times. This study has significant implications for anti-retroviral complex formulations.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cyclodextrins"

1

Amiri, Sahar, and Sanam Amiri. Cyclodextrins. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119247609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sliwa, Wanda, and Tomasz Girek, eds. Cyclodextrins. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Armspach, Dominique. Catenated cyclodextrins. Birmingham: University of Birmingham, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bang, Kim Quynh. CU(II) complexes with cyclodextrins and with amino-cyclodextrin. Dublin: University College Dublin, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frömming, Karl-Heinz, and József Szejtli. Cyclodextrins in Pharmacy. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8277-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Frömming, Karl-Heinz. Cyclodextrins in pharmacy. Dordrecht: Kluwer Academic Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1957-, Forgács Esther, and Royal Society of Chemistry (Great Britain), eds. Cyclodextrins in chromatography. Cambridge: Royal Society of Chemistry, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crini, Grégorio, Sophie Fourmentin, and Eric Lichtfouse, eds. The History of Cyclodextrins. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49308-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mäkelä, Mauri J. Biotechnological production of cyclodextrins. Turku: M. Mäkelä, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brady, Mary Bernadette. Host-guest chemistry of Thioglycosidic Cyclodextrins. Dublin: University College Dublin, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cyclodextrins"

1

Breslow, Ronald. "Cyclodextrins." In Molecular Encapsulation, 43–69. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470664872.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robyt, John F. "Cyclodextrins." In Springer Advanced Texts in Chemistry, 245–61. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1622-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trotta, Francesco. "Cyclodextrins." In Encyclopedia of Membranes, 507–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_2045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frömming, Karl-Heinz, and József Szejtli. "Cyclodextrins." In Topics in Inclusion Science, 1–18. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8277-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szejtli, József. "Cyclodextrins." In Topics in Inclusion Science, 1–78. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-015-7797-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sá Couto, André, Paulo Salústio, and Helena Cabral-Marques. "Cyclodextrins." In Polysaccharides, 247–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trotta, Francesco. "Cyclodextrins." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2045-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salmaso, Stefano, and Fabio Sonvico. "Targeted Cyclodextrins." In Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine, 251–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470926819.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Russell, N. R., and M. McNamara. "Metallo — Cyclodextrins." In Proceedings of the Eighth International Symposium on Cyclodextrins, 163–69. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5448-2_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Szejtli, József. "Ubiquitous Cyclodextrins." In Culture of Chemistry, 261–69. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7565-2_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cyclodextrins"

1

DRANNIKOV, A. A., A. DI MARTINO, and M. E. TRUSOVA. "RHEOLOGICAL STUDY OF MUCOADHESION OF GRAMICIDIN S: HYDROXYPROPYL-ß- CYCLODEXTRIN INCLUSION COMPLEX AND HOW IT IS AFFECTED BY CHITOSAN." In ФАРМОБРАЗОВАНИЕ-2023 Воронеж. Воронежский государственный университет, 2023. http://dx.doi.org/10.17308/978-5-9273-3827-6-2023-217-221.

Full text
Abstract:
Cyclodextrins became famous for their ability to encapsulate chemical compounds, further modifying their properties. In present research, we focused on the mucoadhesion studies of gramicidin S and how it can be influenced by complex formation with hydroxypropyl-ß-cyclodextrin and chitosan. For the investigation, we applied the rheological method using the rotation viscometer. In accordance with the structural properties, hydroxypropyl-ß-cyclodextrin reduces the mucoadhesion of the peptide while chitosan increases. At the same time, both of these compositions can be considered as a possible way to reduce the influence of gramicidin S on the oral mucosa. Complex formation with hydroxypropyl-ß-cyclodextrin leads to lower mucoadhesion of the peptide to the health tissue surface, while interaction with chitosan allows the localization of antibiotic on the infected area, which can enhance the antibacterial effect.
APA, Harvard, Vancouver, ISO, and other styles
2

Nozawa, Ryo, Mohammad Ferdows, Kazuhiko Murakami, and Masahiro Ota. "Effects of Cyclodextrin Solutions on Methane Hydrate Formation." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32987.

Full text
Abstract:
In this paper, we suggest the advanced method of methane hydrate formation by cyclodextrin solutions. The structures of the methane hydrate were experimentally investigated by Raman spectroscopy. The induction time of the methane hydrate formation becomes by shorter 10–30 times and formation rate become by faster 2–4 times originated in the increased methane concentration of hydrate formation water by adding cyclodextrins. The results by the Raman spectroscopy indicate that the structure I methane hydrate is produced and methane molecules exist in both Large and Small cages.
APA, Harvard, Vancouver, ISO, and other styles
3

Jicsinszky, Laszlo, and Robert Ivanyi. "SELECTIVE SUBSTITUTION OF CYCLODEXTRINS: PREPARATION OF NITROGEN CONTAINING CYCLODEXTRINS." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zavodnik, I. B., E. A. Lapshina, T. V. Ilyich, A. G. Veiko, T. A. Kovalenia, and V. U. Buko. "REGULATORY, ANTIOXIDATIVE AND HEPATOPROTECTIVE EFFECTS OF PLANT POLYPHENOLS AND THEIR NANOSTRUCTURED COMPLEXES." In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-255-258.

Full text
Abstract:
Flavonoids, secondary plant metabolites, demonstrate a wide range of biological and pharmacological activities. In our experiment, flavonoids and their complexes with cyclodextrins (10—100 gM) dose-dependently prevented lipid peroxidation of erythrocyte and mitochondrial membranes, inhibited oxidation of reduced glutathione, and modulated the proapoptotic process of the mitochondrial permeability transition pores formation, that depends on flavonoid lipophilicity and structures. Generation of maps of the electron density distribution in the quercetin molecule and the quercetin semiquinone radical shows that the active electronic orbitals of quercetin and its semiquinone radical are delocalized along the phenolic rings, which, in the case of a radical, increases radical stability. The quercetin-hydroxypropyl-e-cyclodextrin complex proved to be a more effective antioxidant.
APA, Harvard, Vancouver, ISO, and other styles
5

Bednarz, Szczepan, Marcin Lukasiewicz, Wojciech Mazela, Michal Pajda, Stanislaw Kowalski, Sabina Foks, Anna Garlicka, Maciej Kabzinski, and Kacper Kaczmarczyk. "Processes of Cyclodextrins grafting on cotton." In The 11th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2007. http://dx.doi.org/10.3390/ecsoc-11-01355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papezhuk, M. V., A. V. Chemodanova, V. A. Volynkin, and V. T. Panyushkin. "FUNCTIONALIZED CYCLODEXTRINS FOR TARGETED DRUG TRANSPORT." In MedChem-Russia 2021. 5-я Российская конференция по медицинской химии с международным участием «МедХим-Россия 2021». Издательство Волгоградского государственного медицинского университета, 2021. http://dx.doi.org/10.19163/medchemrussia2021-2021-502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ambrus, Rita, Csilla Bartos, Gábor Katona, Tamás Kiss, Zoltán Aigner, and Piroska Szabó-Révész. "Cyclodextrins in traditional and alternative drug formulations." In The 1st International Electronic Conference on Pharmaceutics. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecp2020-08912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alvarez-Lorenzo, Carmen. "Cyclodextrins as multipurpose materials for bone regeneration." In The 1st International Electronic Conference on Pharmaceutics. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecp2020-08688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ueno, Akihiko, Hiroshi Ikeda, and Taiyo Aoyagi. "Signal transduction in chemosensors of modified cyclodextrins." In BiOS '97, Part of Photonics West, edited by Richard B. Thompson. SPIE, 1997. http://dx.doi.org/10.1117/12.273523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wirén, Charlotta, Mònica Campàs, Maria Rambla-Alegre, Anna Safont, Carles Alcaraz, Jorge Diogène, Mabel Torréns, and Alex Fragoso. "Cyclodextrins as capture agents of lipophilic marine toxins." In 1st International Electronic Conference on Toxins. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iect2021-09170.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cyclodextrins"

1

Rimphanitchayakit, Vichien, and Raevadee Siritunyanont. Mutagenesis of cyclodextrin glucanotransferase gene that affects themostability of the enzyme. Chulalongkorn University, 2006. https://doi.org/10.58837/chula.res.2006.34.

Full text
Abstract:
Cyclodextrins are cyclic oligosaccharides of 6, 7 andf 8 glucose units, called [alpha]-, [beta]- and [gamma]- cyclodextrins (CDs)s, respectively. CDs are the products of enzymatic conversation of starch and related substrates by cyclodextrin glucanotransferases (CGTases), and are useful carrier molecules for applications in industries. The CGTase consists of 5 domains, A, B, C, D, and E. Domains A/B are the central catalytic domains while others perform accessory functions. The commercial production of CDs required that the starch be liquefied at high temperature before the CGTase reaction at much lower temperature. Thermostable CGTase would, therefore, be useful for efficient production of CDs. By using amino acid sequence comparison between the Bacillus circulans A11 CGTase and the thermostable CGTases, four major different regions I, II, III, IV were found at position 89-94, 265-271, 333-339, and 538-540 (B. circulans A11 CGTase numbering), respectively. The relevant regions I-III were located in domains A/B. In this study, these three regions in [beta]-CGTase from Bacillus circulans A11 were mutated in favor of the thermostable CGTase sequences using the unique site elimination (USE) mutagenesis method. The mutant plasmids, pRS1, 2 and 3 that have the mutation region I, II, and III, respectively, were obtained. Then, the mutant plasmids containing the various combinations of the 3 mutation regions were constructed. The dextrinizing activity, thermostability and CD-forming activity of the mutant enzymes from these clones were studied in order to determine whether how these different regions affect the thermostability of CGTase. We found that at all the three mutation regions gave rise to an increase in dextrinizing activity, a decrease in optimum temperature and no increase in thermostability. All CGTase mutants were active in CD-forming activity; all but one with altered product specificity.
APA, Harvard, Vancouver, ISO, and other styles
2

Hunt, J., A. Wagner, and T. Michalski. Application of sup 252 CF-PDMS in the analysis of cyclodextrins and their derivatives. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6985784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hannongbua, Supot. Conformational diversity of cyclodextrins for applications in food and pharmaceutical industries : Research report (completed). Chulalongkorn University, 2015. https://doi.org/10.58837/chula.res.2015.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Young, Sandra K., Peter L. Vajda, Eugene Napadensky, Dawn M. Crawford, and James M. Sloan. Structure-Scavenging Abilities of Cyclodextrin-Based Polyurethanes. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada406085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, DeQuan. Cyclodextrin-based chemical microsensors for Volatile Organic Compounds (VOCs). Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/562505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tengamnuay, Parkpoom. Efficacy and mechanistic studies of chitosan as nasal absorption enhancer of peptide drugs : research report. Chulalongkorn University, 1999. https://doi.org/10.58837/chula.res.1999.27.

Full text
Abstract:
Objective. To evaluation the in vivo efficacy of chitosan as nasal absorption enhancers of peptides in rats and compare the results with that of hydroxypropyl- and dimethyl-Beta-cyclodextrins (HPBetaCD and DMBetaCD). Methods. Two types of chitosan. i.e., the free base (CSJ) and the glutamate salt form (CSG) were evaluated for their nasal absorption enhancing effect on salmon calcitonin (sCT) using an in vibo rat absorption technique. Solutions containing sCT and chitosan (0 to 1.25 % w/v) in isotonic phosphate buffers (pH 3.0 to 6.0) were nasally administered at the dose of 10 IU/kg. The plasma calcium lowering effect in each sCT-treated rat was determined by calculating the total percent decrease in plasma calcium (%D). Results. CSJ showed an increase in %D as the solution pH was decreased in accordance with the increased ionization and hydration of the free base chitosan at the more acidic pH. However, CSG showed an increase in %D with increasing pH, with maximum calcium lowereing effect observed at pH 6.0. At their optimal pH (4.0 for CSJ and 6.0 for CSG), the absorption enhancing effect of both chitosans was concentration dependent from 0.25 to 1.0 % w/v and leveled off at 1.25% w/v. Using specific RIA, the absolute bioavailability of plasma sCT was determined to be 2.45, 1.91, and 1.22 % for 1% CSJ, 5% DMBetaCD, and control group (intranasal sCt alone). Respectively. All the enhancers showed significant absorption enhancement with the highest effect observed with CSJ and DMBetaCD wheras the effect of HPBetaCD was the smallest. Also, the two chitosan did not possess any inhibitory effect on the in vitro activities of trypsin and leucine aminopeptidase, two major nasal proteolytic enzymes responsible for the degradation of sCT in the nasal cavity. Thus, the nasal absorption enhancement of chitosans may not involve protection of the peptide against proteolytic degradation in the nasal cavity. In conclusion, cationic polymer chitosans may have promising potential as an effective nasal absorption enhancer ofsCT.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Chaijun, Jihyun Lee, Jinwoong Jung та Ildoo Chung. Synthesis and characterization of polyrotaxane based on mono-6-tosyl-β -cyclodextrin. Peeref, липень 2023. http://dx.doi.org/10.54985/peeref.2307p1226234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

RHODE ISLAND UNIV KINGSTON. Cyclodextrin-Enhanced In Situ Removal of Organic Contaminants from Groundwater at Department of Defense Sites. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada607331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chutimaworapan, Suchada. Fast release solid dispersion system of nifedipine. Chulalongkorn University, 1999. https://doi.org/10.58837/chula.res.1999.28.

Full text
Abstract:
Nifedupine solid dispersions in polyethylene glycols (PEG4000 and PEG6000), poloxamers (poloxamer188 poloxamer288 and poloxamer407), [beta]-cyclodextrin (BCD) and 2-hydroxypropyl-[beta]-cyclodextrin (HPBCD), at the drug:carrier ratio if 1:1, 1:3, 1:5, and 1:10 were investigated. The systems were prepared by melting, solvent and kneading method and compared to physical mixtures. It was found that the drug:carrier ratio of 1:10 and by melting and solvent methods showed most conspicuous dissolution rates in most systems (p&lt;0.05). The most markedly improved rate was exhibited from the poloxamers. The prominently increased dissolution rates and the time for 80% drug dissolved of only 15 min were obtained in poloxamer 188 and poloxamer 407 from melting method at the 1:3, 1:5, 1:10 ratios. PEG 4000 and PEG 6000 exhibited a very close dissolution rates when compared within the same method and ratio. Whereas BCD and HPBCD showed only a slightly increase of dissolution rate constants. Physicochemical characterizations showed that the possible key mechanism for fast release was the amorphous transformation of nifedipine in carriers, which shown via X-ray diffraction and differential scanning calorimetry. The marked improved wettability and solubility of nifedipine also gave beneficial effects. The intermolecular H-bonding between nifedipine and carriers was exhibited from the infrared spectral analyses.
APA, Harvard, Vancouver, ISO, and other styles
10

Dr. Thieo Hogen-Esch. Complex formation of beta-cyclodextrin in aqueous media with poly(N,N-dimethylacrylamide)containing pendent perfluorooctanesulfonamido groups. Final Report, September 15, 1998 - September 14, 1999. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/756725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography