To see the other types of publications on this topic, follow the link: Cyclooctane.

Journal articles on the topic 'Cyclooctane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cyclooctane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Trakarnpruk, Wimonrat, Apiwat Wannatem, and Jutatip Kongpeth. "Polyoxometalates catalysts in the oxidation of cyclooctane by hydrogen peroxide." Journal of the Serbian Chemical Society 77, no. 11 (2012): 1599–607. http://dx.doi.org/10.2298/jsc111124040t.

Full text
Abstract:
A Keggin-type tungstocobaltate, [Co(2,2'- bipy)3]2H2[CoW12O40]?9.5H2O ([Co]CoW) and tetrabutylammonium salt of vanadium-substituted tungstophosphates [(n-C4H9)4N]4[PVW11O40], [(n-C4H9)4N]5[PV2W10O40] (PVW, PV2W) were used as catalyst for oxidation of cyclooctane with H2O2 as oxidant in acetonitrile. The activity of [(n-C4H9)4N4H[PCo(H2O)W11O39]?2H2O (PCoW) was also compared. The products of the reaction were cyclooctanone, cyclooctanol and cyclooctyl hydroperoxide. The experimental results showed that at H2O2/cyclooctane molar ratio = 3 at 80?C, in 9 h the [Co]CoW yielded higher conversion and
APA, Harvard, Vancouver, ISO, and other styles
2

Allen, F. H., J. A. K. Howard, and N. A. Pitchford. "Symmetry-modified conformational mapping and classification of the medium rings from crystallographic data. IV. Cyclooctane and related eight-membered rings." Acta Crystallographica Section B Structural Science 52, no. 5 (1996): 882–91. http://dx.doi.org/10.1107/s0108768196007409.

Full text
Abstract:
Crystallographic observations of eight-membered ring conformations, retrieved from the Cambridge Structural Database, have been mapped and classified using symmetry-adapted deformation coordinates, principal component analysis and cluster analysis. Seven subsets of eight-membered rings, containing 11–32 conformational observations, have been analysed: cyclooctane (dataset 8C1), cyclooctene (8C2), cycloocta-1,3-diene (8C3), mono-exo-unsaturated carbocycles (8C4), monohetero (8A1), 1,5-dihetero (8A2) and 1,3,5,7-tetrahetero rings (8A3). The energetically preferred (by ~7 kJ mol−1) boat-chair for
APA, Harvard, Vancouver, ISO, and other styles
3

Chow, Yuan L., and Huali Li. "Light-promoted catalysis of nickel hydride complexes in the isomerization and hydrogenation of cis,cis-1,5-cyclooctadiene: mechanistic studies." Canadian Journal of Chemistry 64, no. 11 (1986): 2229–31. http://dx.doi.org/10.1139/v86-367.

Full text
Abstract:
Xanthone-sensitized photoreduction of Ni(acac)2 in benzene under hydrogen, in the presence of cis,cis-1,5-cyclooctadiene (1,5-COD), causes isomerization and hydrogenation of the diene according to the consecutive transformation 1,5-COD → 1,4-COD → 1,3-COD → cyclooctene → cyclooctane. Evidence was provided that (i) a nickel hydride complex was generated, (ii) the sensitized excitation of this complex caused addition to the double bond, (iii) subsequent elimination caused isomerization, and (iv) triplet excited xanthone sensitized the transformations.
APA, Harvard, Vancouver, ISO, and other styles
4

Salamci, Emine, and Yunus Zozik. "Stereoselective syntheses of 3-aminocyclooctanetriols and halocyclooctanetriols." Beilstein Journal of Organic Chemistry 17 (March 11, 2021): 705–10. http://dx.doi.org/10.3762/bjoc.17.59.

Full text
Abstract:
The efficient synthesis of two new stereoisomeric 3-aminocyclooctanetriols and their new halocyclitol derivatives starting from cis,cis-1,3-cyclooctadiene are reported. Reduction of cyclooctene endoperoxide, obtained by photooxygenation of cis,cis-1,3-cyclooctadiene, with zinc yielded a cyclooctene diol followed by acetylation of the hydroxy group, which gave dioldiacetate by OsO4/NMO oxidation. The cyclooctane dioldiacetate prepared was converted to the corresponding cyclic sulfate via the formation of a cyclic sulfite in the presence of catalytic RuO4. The reaction of this cyclic sulfate wit
APA, Harvard, Vancouver, ISO, and other styles
5

Salamci, Emine, Reşat Ustabaş, Ufuk Çoruh, Metin Yavuz, and Ezequiel M. Vázquez-López. "Cyclooctane-1,2,5,6-tetrayl tetraacetate." Acta Crystallographica Section E Structure Reports Online 62, no. 6 (2006): o2401—o2402. http://dx.doi.org/10.1107/s1600536806018204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lisicki, Dawid, and Beata Orlińska. "Oxidation of cycloalkanes catalysed by N-hydroxyimides in supercritical carbon dioxide." Chemical Papers 74, no. 2 (2019): 711–16. http://dx.doi.org/10.1007/s11696-019-00937-0.

Full text
Abstract:
Abstract This paper reports cyclopentane, cyclohexane and cyclooctane oxidation in the presence of N-hydroxyphthalimide or 4-dodecyloxycarbonyl-N-hydroxyphthalimide in combination with Co(II) and Fe(II) salts using O2/CO2 mixture (0.5 MPa O2, 9.5 MPa CO2). The studies demonstrated that the application of scCO2 in cyclohexane and cyclooctane oxidation processes results in higher conversion and yield of respective ketone and alcohol in comparison to processes performed using air under pressure (0.7 MPa).
APA, Harvard, Vancouver, ISO, and other styles
7

LaVerne, Jay A., and Laszlo Wojnarovits. "Heavy-Ion Radiolysis of Cyclooctane." Journal of Physical Chemistry 99, no. 24 (1995): 9862–68. http://dx.doi.org/10.1021/j100024a030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gheorghe, Daniela, Ana Neacsu, and Stefan Perisanu. "Thermochemistry of Eight Membered Ring Hydrocarbons. The Enthalpy of Formation of Cyclooctane." Revista de Chimie 71, no. 3 (2001): 507–15. http://dx.doi.org/10.37358/rc.20.3.8025.

Full text
Abstract:
A new value of the enthalpy of formation of cyclooctane (-156.2�1.2 kJ mol-1) based on heat of combustion measurements is reported. Its solid - liquid phase change was investigated by differential scanning calorimetry in both directions revealing an overcooling effect of over 23 K. Our enthalpy of formation of cyclooctane was used together with literature values of heats of hydrogenation of 8 carbon atoms cycloolefins to calculate the enthalpies of formation of the later. The strain energies of the investigated molecules were calculated and discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Maris, T., M. J. Henson, S. J. Heyes, and Keith Prout. "Investigations of the Phase Transitions in Thiourea Inclusion Compounds with Cycloheptane, Cyclooctane, and Cyclooctanone." Chemistry of Materials 13, no. 8 (2001): 2483–92. http://dx.doi.org/10.1021/cm991173u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bożek, Barbara, Patrícia Neves, Marcin Oszajca, et al. "Simple Hybrids Based on Mo or W Oxides and Diamines: Structure Determination and Catalytic Properties." Catalysis Letters 150, no. 3 (2019): 713–27. http://dx.doi.org/10.1007/s10562-019-02935-z.

Full text
Abstract:
Abstract Crystalline hybrid catalysts based on molybdenum or tungsten oxide and aliphatic diamines were synthesized via simple, eco-friendly reproducible methodologies, starting from commercially available and relatively inexpensive organic and inorganic precursors, and using water as solvent under mild conditions. The crystal structures of the obtained fine powdered solids were solved ab initio from powder X-ray diffraction data. The type of organic component (1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane) may play a structure-directing role. On the other hand, different metals (M
APA, Harvard, Vancouver, ISO, and other styles
11

Lizak, Martin J., Robert C. Keller, Matthew S. Coffey, Mark S. Conradi, and William Bunnelle. "Rotation and pseudorotation in solid cyclooctane." Journal of Physical Chemistry 94, no. 2 (1990): 992–94. http://dx.doi.org/10.1021/j100365a090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wei, Shouliu, Xiaoling Ke, and Yan Wang. "Wiener Indices in Random Cyclooctane Chains." Wuhan University Journal of Natural Sciences 23, no. 6 (2018): 498–502. http://dx.doi.org/10.1007/s11859-018-1355-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Eleazer, Bennett J., Mark D. Smith, Alexey A. Popov, and Dmitry V. Peryshkov. "Rapid reversible borane to boryl hydride exchange by metal shuttling on the carborane cluster surface." Chemical Science 8, no. 8 (2017): 5399–407. http://dx.doi.org/10.1039/c7sc01846k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nagalakshmi, R. A., J. Suresh, S. Maharani, R. Ranjith Kumar, and P. L. Nilantha Lakshman. "Isotypic crystal structures of 1-benzyl-4-(4-bromophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile and 1-benzyl-4-(4-fluorophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile." Acta Crystallographica Section E Structure Reports Online 70, no. 11 (2014): 344–47. http://dx.doi.org/10.1107/s1600536814022016.

Full text
Abstract:
The molecules of the two isotypic title compounds, C25H24BrN3, (I), and C25H24FN3, (II), comprise a 2-iminopyridine ring fused with a cyclooctane ring. In (I), the cyclooctane ring adopts a twisted chair–chair conformation, while in (II), this ring adopts a twisted boat–chair conformation. The dihedral angles between the planes of the pyridine ring and the bromobenzene and phenyl rings are 80.14 (12) and 71.72 (13)°, respectively, in (I). The equivalent angles in (II) are 75.25 (8) and 68.34 (9)°, respectively. In both crystals, inversion dimers linked by pairs of C—H...N interactions generate
APA, Harvard, Vancouver, ISO, and other styles
15

Silva, Telma F. S., Bruno G. M. Rocha, M. Fátima C. Guedes da Silva, Luísa M. D. R. S. Martins, and Armando J. L. Pombeiro. "V(iv), Fe(ii), Ni(ii) and Cu(ii) complexes bearing 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate: application as catalysts for the cyclooctane oxidation." New Journal of Chemistry 40, no. 1 (2016): 528–37. http://dx.doi.org/10.1039/c5nj01865j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Fengli, Weiguang Sun, Jiankun Guan, et al. "Anti-inflammatory fusicoccane-type diterpenoids from the phytopathogenic fungus Alternaria brassicicola." Organic & Biomolecular Chemistry 16, no. 45 (2018): 8751–60. http://dx.doi.org/10.1039/c8ob02353k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mohammadi, Amir H., and Dominique Richon. "Clathrate hydrate dissociation conditions for the methane+cycloheptane/cyclooctane+water and carbon dioxide+cycloheptane/cyclooctane+water systems." Chemical Engineering Science 65, no. 10 (2010): 3356–61. http://dx.doi.org/10.1016/j.ces.2010.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Xian-Lei, Yun-Yu Lu, Jie Wang, et al. "A novel synthetic approach to the bicyclo[5.3.1]undecan-11-one framework of vinigrol." Org. Biomol. Chem. 12, no. 22 (2014): 3562–66. http://dx.doi.org/10.1039/c4ob00046c.

Full text
Abstract:
A unique approach to the [5.3.1] bicyclic core of vinigrol is described featuring highly stereoselective C–C bond forming reactions through exploring the inherent conformational bias of the cyclooctane-ring system.
APA, Harvard, Vancouver, ISO, and other styles
19

Paquette, Leo A., and Yunlong Zhang. "Enantioselective Route from Carbohydrates to Cyclooctane Polyols." Organic Letters 7, no. 3 (2005): 511–13. http://dx.doi.org/10.1021/ol0474296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rocha, Willian R., Josefredo R. Pliego, Stella M. Resende, H�lio F. Dos Santos, Marcos A. De Oliveira, and Wagner B. De Almeida. "Ab initio conformational analysis of cyclooctane molecule." Journal of Computational Chemistry 19, no. 5 (1998): 524–34. http://dx.doi.org/10.1002/(sici)1096-987x(19980415)19:5<524::aid-jcc5>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Galatsis, Paul, and Jeffrey J. Manwell. "Construction of fused bicyclic cyclooctane ring frameworks." Tetrahedron 51, no. 3 (1995): 665–78. http://dx.doi.org/10.1016/0040-4020(94)00988-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Mi, Shan Yan, Yu Liang, et al. "Talaronoids A–D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/6 ring system from the fungus Talaromyces stipitatus." Organic Chemistry Frontiers 7, no. 21 (2020): 3486–92. http://dx.doi.org/10.1039/d0qo00960a.

Full text
Abstract:
Talaronoids A–D (1–4), four fusicoccane diterpenoids with an unexpected tricyclic 5/8/6 carbon skeleton from Talaromyces stipitatus, represent the first examples of natural products with a benzo[a]cyclopenta[d]cyclooctane skeleton.
APA, Harvard, Vancouver, ISO, and other styles
23

Nishimura, Tsubasa, Takahiro Sakurai, Hiroshi Shinokubo, and Yoshihiro Miyake. "Iron hexamesityl-5,15-diazaporphyrin: synthesis, structure and catalytic use for direct oxidation of sp3 C–H bonds." Dalton Transactions 50, no. 18 (2021): 6343–48. http://dx.doi.org/10.1039/d1dt00893e.

Full text
Abstract:
Iron hexamesityl-5,15-diazaporphyrin was successfully synthesized. Its use for catalytic oxidation of cyclooctane showed high performance with a total TON up to 731. The introduction of bulky mesityl groups prevented the catalyst deactivation via formation of a μ-oxo dimer.
APA, Harvard, Vancouver, ISO, and other styles
24

Ren, Xiaomei, Afaf H. El-Sagheer, and Tom Brown. "Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling." Analyst 140, no. 8 (2015): 2671–78. http://dx.doi.org/10.1039/c5an00158g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ishii, Akihiko, Aya Ono, and Norio Nakata. "Three syntheses of trans-cyclooctane-1,2-dithiol by ring opening of cis-cyclooctene episulfoxide with ammonium thiocyanate followed by reduction and reductions of trans-1,2-di(thiocyanato)cyclooctane and trans-1,2-cyclooctyl trithiocarbonate." Journal of Sulfur Chemistry 30, no. 3-4 (2009): 236–44. http://dx.doi.org/10.1080/17415990902839435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alamdari, Mostafa Honari, Madeleine Helliwell, Mehdi M. Baradarani, and John A. Joule. "Synthesis of some cyclooctane-based pyrazines and quinoxalines." Arkivoc 2008, no. 14 (2008): 166–79. http://dx.doi.org/10.3998/ark.5550190.0009.e17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Keller, Robert C., Matthew S. Coffey, Martin J. Lizak, Mark S. Conradi, and William Bunnelle. "Molecular motions and metastable phases in solid cyclooctane." Journal of Physical Chemistry 93, no. 9 (1989): 3832–36. http://dx.doi.org/10.1021/j100346a090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fitzgerald, Jeffrey P. "Cyclooctane conformational analysis via mechanical and computational models." Journal of Chemical Education 70, no. 12 (1993): 988. http://dx.doi.org/10.1021/ed070p988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chan, Yun Wai, and Kin Shing Chan. "Metalloradical-Catalyzed Aliphatic Carbon−Carbon Activation of Cyclooctane." Journal of the American Chemical Society 132, no. 20 (2010): 6920–22. http://dx.doi.org/10.1021/ja101586w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

CHABUTKINA, E. M., N. V. ARTEM'EVA, A. A. KUNITSKII, YU P. ZHUKOV, and T. N. ANTONOVA. "ChemInform Abstract: Catalytic Liquid-Phase Oxidation of Cyclooctane." ChemInform 29, no. 35 (2010): no. http://dx.doi.org/10.1002/chin.199835076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Foces-Foces, C., F. H. Cano, P. Cabildo, R. M. Claramunt, and J. Elguero. "Structure and conformation of a hetero-substituted cyclooctane." Acta Crystallographica Section C Crystal Structure Communications 47, no. 12 (1991): 2583–85. http://dx.doi.org/10.1107/s0108270191005103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sakhaee, Nader, Sahar Sakhaee, and Akbar mobaraki. "Pseudorotaion in cyclooctane, using spherical conformational landscape model." Computational and Theoretical Chemistry 1184 (August 2020): 112845. http://dx.doi.org/10.1016/j.comptc.2020.112845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zulfiqar, Fazila, and Abdul Malik. "Facile Approach to Versatile Chiral Intermediates for Fused Cyclopentanoid Natural Products." Zeitschrift für Naturforschung B 56, no. 11 (2001): 1227–34. http://dx.doi.org/10.1515/znb-2001-1119.

Full text
Abstract:
A facile approach to cis- and trans-2-(l-hydroxymethyl)vinyl-1-vinylcyclohexan-1-ols and to the corresponding cyclopentane, cycloheptane, and cyclooctane derivatives has been developed, starting from cycloalkanones involving the key steps of Rupe and Claisen orthoester rearrangements. The formation of intervening products could be explained by allylic strain and π-stacking, respectively.
APA, Harvard, Vancouver, ISO, and other styles
34

Nagalakshmi, R. A., J. Suresh, S. Maharani, R. Ranjith Kumar, and P. L. Nilantha Lakshman. "Crystal structure of 1-benzyl-4-(4-chlorophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile." Acta Crystallographica Section E Structure Reports Online 70, no. 10 (2014): 167–69. http://dx.doi.org/10.1107/s160053681401962x.

Full text
Abstract:
The title compound, C25H24ClN3, comprises a 2-iminopyridine ring fused with a cyclooctane ring, which adopts a twist boat–chair conformation. In the crystal, C—H...N interactions formR22(14) ring motifs and molecules are further connected by weak C—H...π interactions. The resulting supramolecular structure is a two-dimensional framework parallel to theabplane.
APA, Harvard, Vancouver, ISO, and other styles
35

Vishnupriya, R., J. Suresh, S. Maharani, R. Ranjith Kumar, and P. L. Nilantha Lakshman. "2-Methoxy-4-(2-methoxyphenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile." Acta Crystallographica Section E Structure Reports Online 70, no. 6 (2014): o656. http://dx.doi.org/10.1107/s1600536814010332.

Full text
Abstract:
In the title compound, C20H22N2O2, the central pyridine ring forms a dihedral angle of 76.32 (8)° with the pseudo-axial benzene ring. The cyclooctane ring adopts a twisted boat chair conformation. In the crystal, weak intermolecular C—H...π interactions between inversion-related molecules result in the formation of linear double chains along theb-axis direction.
APA, Harvard, Vancouver, ISO, and other styles
36

Pump, Eva, Zhen Cao, Manoja K. Samantaray, Anissa Bendjeriou-Sedjerari, Luigi Cavallo, and Jean-Marie Basset. "Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis." ACS Catalysis 7, no. 10 (2017): 6581–86. http://dx.doi.org/10.1021/acscatal.7b01249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huang, Yining, Denis F. R. Gilson, and Ian S. Butler. "Vibrational spectroscopic studies of phase transitions in solid cyclooctane." Journal of Physical Chemistry 95, no. 13 (1991): 5051–54. http://dx.doi.org/10.1021/j100166a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Saičié, Radomir N. "Synthesis of bridged cyclooctane derivatives via alkoxy radical fragmentation." Tetrahedron Letters 38, no. 2 (1997): 295–98. http://dx.doi.org/10.1016/s0040-4039(96)02296-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Taubmann, Silke, and Helmut G. Alt. "Catalytic dehydrogenation of cyclooctane with neutral iridium(I) complexes." Journal of Organometallic Chemistry 693, no. 10 (2008): 1808–14. http://dx.doi.org/10.1016/j.jorganchem.2008.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wojnarovits, Laszlo, and Jay A. LaVerne. "Radiolysis of Cyclooctane with .gamma.-Rays and Helium Ions." Journal of Physical Chemistry 98, no. 33 (1994): 8014–18. http://dx.doi.org/10.1021/j100084a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

BHARADWAJ, RISHIKESH K. "Conformational properties of cyclooctane: a molecular dynamics simulation study." Molecular Physics 98, no. 4 (2000): 211–18. http://dx.doi.org/10.1080/00268970009483284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Aranda, Alfonso, Yolanda Díaz-de-Mera, Iván Bravo, and Lorena Morales. "Cyclooctane tropospheric degradation initiated by reaction with Cl atoms." Environmental Science and Pollution Research - International 14, no. 3 (2007): 176–81. http://dx.doi.org/10.1065/espr2006.12.374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

GALATSIS, P., and J. J. MANWELL. "ChemInform Abstract: Construction of Fused Bicyclic Cyclooctane Ring Frameworks." ChemInform 26, no. 26 (2010): no. http://dx.doi.org/10.1002/chin.199526078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fujii, Takahiro, Kiyoshi Yukawa, and Yasukazu Saito. "Thermal Dehydrogenation of Cyclooctane by Supported Noble Metal Catalysts." Bulletin of the Chemical Society of Japan 64, no. 3 (1991): 938–41. http://dx.doi.org/10.1246/bcsj.64.938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Trakarnpruk, W., and P. Dumrongpong. "Iron supported clay as catalysts for oxidation of cyclooctane." Journal of Materials Science 41, no. 10 (2006): 3001–6. http://dx.doi.org/10.1007/s10853-006-6767-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Müller, C. A., A. M. Weingartner, A. Dennig, A. J. Ruff, H. Gröger, and Ulrich Schwaneberg. "A whole cell biocatalyst for double oxidation of cyclooctane." Journal of Industrial Microbiology & Biotechnology 43, no. 12 (2016): 1641–46. http://dx.doi.org/10.1007/s10295-016-1844-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

ABBOT, J. "Catalytic reactions of cyclooctane and ethylcyclohexane on HY zeolite." Journal of Catalysis 107, no. 2 (1987): 571–78. http://dx.doi.org/10.1016/0021-9517(87)90322-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dorofeeva, O. V., V. S. Mastryukov, K. Siam, J. D. Ewbank, N. L. Allinger, and L. Schafer. "Conformational state of cyclooctane, C8H14, in the gas phase." Journal of Structural Chemistry 31, no. 1 (1990): 153–54. http://dx.doi.org/10.1007/bf00752028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Han, Lei, Frank Siekmann, and Cornelius Zetzsch. "Rate Constants for the Reaction of OH Radicals with Hydrocarbons in a Smog Chamber at Low Atmospheric Temperatures." Atmosphere 9, no. 8 (2018): 320. http://dx.doi.org/10.3390/atmos9080320.

Full text
Abstract:
The photochemical reaction of OH radicals with the 17 hydrocarbons n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,2-dimethylhexane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene, p-xylene, and o-xylene was investigated at 288 and 248 K in a temperature controlled smog chamber. The rate constants were determined from relative rate calculations with toluene and n-pentane as reference compounds, respectively. The results from this work at 288 K show good agreement with previous literature da
APA, Harvard, Vancouver, ISO, and other styles
50

Yukawa, Kiyoshi, Haruo Kanaboshi, and Yasukazu Saito. "Thermocatalytic Dehydrogenation of Cyclooctane with Heterogenized Trinuclear Ruthenium Cluster Complex." Chemistry Letters 21, no. 7 (1992): 1177–80. http://dx.doi.org/10.1246/cl.1992.1177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!