To see the other types of publications on this topic, follow the link: Cyclophosphazene.

Journal articles on the topic 'Cyclophosphazene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cyclophosphazene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yıldırım, Tuba, Elif Şenkuytu, Emel Ergene, Kemal Bilgin, Yıldız Uludağ, and Gönül Yenilmez Çiftçi. "Biological Activity of New Cyclophosphazene Derivatives Including Fluorenylidene-Bridged Cyclophosphazenes." ChemistrySelect 3, no. 34 (2018): 9933–39. http://dx.doi.org/10.1002/slct.201801766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chandrasekhar, Vadapalli, Venkatasubbaiah Krishnan, Arunachalampillai Athimoolam, and Gurusamy Thangavelu Senthil Andavan. "New hybrid inorganic-organic polymers containing cyclophosphazenes as pendant groups: Cyclophosphazene ligands containing hydrazone linkages and their conversion to polymers." Canadian Journal of Chemistry 80, no. 11 (2002): 1415–20. http://dx.doi.org/10.1139/v02-099.

Full text
Abstract:
The reaction of the cyclotriphosphazene N3P3Cl5[O-C6H4-p-C6H4-p-CH=CH2] (2) with 10 equiv of N-methylhydrazine proceeds in a regio-specific manner to afford the multi-functional hydrazide N3P3[N(Me)NH2]5[O- C6H4-p-C6H4-p-CH=CH2] (3). Condensation of 3 with o-hydroxy benzaldehyde or pyridine-2-carboxaldehyde affords the corresponding hydrazones N3P3[N(Me)N=CH-C6H4-o-OH]5[O-C6H4-p-C6H4-p-CH=CH2] (4) and N3P3[N(Me)N=CH-C6H4N]5[O-C6H4-p-C6H4-p-CH=CH2] (5), respectively. These hydrazones can be homopolymerized to afford polymers 6 and 7 containing multi-site coordinating cyclophosphazenes as pendan
APA, Harvard, Vancouver, ISO, and other styles
3

Po, Riccardo, Luisa Fiocca, Giorgio Giannotta, et al. "Reactive Cyclophosphazenes Containing Oxazoline Groups: the Case of Hexakis(4-Oxazolinophenoxy)Cyclophosphazene." Phosphorus, Sulfur, and Silicon and the Related Elements 168, no. 1 (2001): 269–74. http://dx.doi.org/10.1080/10426500108546566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bosscher, G., A. Meetsma, and J. C. van de Grampel. "Novel Organo-Substituted Cyclophosphazenes via Reaction of a Monohydro Cyclophosphazene and Acetyl Chloride." Inorganic Chemistry 35, no. 23 (1996): 6646–50. http://dx.doi.org/10.1021/ic960466b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bao, Rui, Jin-Jun Qiu, Shu-Zheng Liu, Tao Cheng, Dong Li, and Cheng-Mei Liu. "Photosensitive Cyclophosphazene and Polyphosphazene." Phosphorus, Sulfur, and Silicon and the Related Elements 183, no. 2-3 (2008): 636–37. http://dx.doi.org/10.1080/10426500701795092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, Christopher, Robert Hayes, Charles Myer, Amy Freund, and Marie Kearney. "New Organofunctional Cyclophosphazene Derivatives." Phosphorus, Sulfur, and Silicon and the Related Elements 109, no. 1 (1996): 79–82. http://dx.doi.org/10.1080/10426509608545095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimomoto, Hiroaki, Hironori Asano, Tomomichi Itoh, and Eiji Ihara. "Pd-initiated controlled polymerization of diazoacetates with a bulky substituent: synthesis of well-defined homopolymers and block copolymers with narrow molecular weight distribution from cyclophosphazene-containing diazoacetates." Polymer Chemistry 6, no. 26 (2015): 4709–14. http://dx.doi.org/10.1039/c5py00532a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Po, Riccardo, Luisa Fiocca, Giorgio Giannotta, et al. "ChemInform Abstract: Reactive Cyclophosphazenes Containing Oxazoline Groups: The Case of Hexakis(4-oxazolinophenoxy)cyclophosphazene." ChemInform 33, no. 5 (2010): no. http://dx.doi.org/10.1002/chin.200205265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suriya Narayanan, Ramakirushnan, and Vadapalli Chandrasekhar. "Molecular, 1D and 2D assemblies from hexakis(3-pyridyloxy)cyclophosphazene containing 20-membered metallamacrocyclic motifs." Dalton Transactions 45, no. 5 (2016): 2273–83. http://dx.doi.org/10.1039/c5dt03537f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Uslu, Aylin, and Serkan Yeşilot. "Recent advances in the supramolecular assembly of cyclophosphazene derivatives." Dalton Transactions 50, no. 7 (2021): 2324–41. http://dx.doi.org/10.1039/d0dt04095a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Krishnadevi, Krishnamoorthy, and Vaithilingam Selvaraj. "Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications." New Journal of Chemistry 39, no. 8 (2015): 6555–67. http://dx.doi.org/10.1039/c5nj00364d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kundu, Subrata, Chandrajeet Mohapatra, and Vadapalli Chandrasekhar. "Cyclophosphazene–organostannoxane hybrid motifs in polymeric and molecular systems." RSC Adv. 4, no. 96 (2014): 53662–64. http://dx.doi.org/10.1039/c4ra09371b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zuo, Cai, Mengling Yang, Zhijun Wang, et al. "Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries." Journal of Materials Chemistry A 7, no. 32 (2019): 18871–79. http://dx.doi.org/10.1039/c9ta05028k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rekha, Pawan, Raeesh Muhammad, and Paritosh Mohanty. "Sonochemical synthesis of cyclophosphazene bridged mesoporous organosilicas and their application in methyl orange, congo red and Cr(vi) removal." RSC Advances 5, no. 83 (2015): 67690–99. http://dx.doi.org/10.1039/c5ra11622h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Krishnadevi, Krishnamoorthy, Vaithilingam Selvaraj, and Dakshinamoorthy Prasanna. "Thermal, mechanical and antibacterial properties of cyclophosphazene incorporated benzoxazine blended bismaleimide composites." RSC Advances 5, no. 2 (2015): 913–21. http://dx.doi.org/10.1039/c4ra10564h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brandt, Krystyna, Teobald Kupka, Jaroslaw Drodz, Johan C. van de Grampel, Auke Meetsma, and Andries P. Jekel. "New dioxytetraethyleneoxy macrocyclic cyclophosphazene derivatives." Inorganica Chimica Acta 228, no. 2 (1995): 187–92. http://dx.doi.org/10.1016/0020-1693(94)04162-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Uslu, Aylin, and Serkan Yeşilot. "Chiral configurations in cyclophosphazene chemistry." Coordination Chemistry Reviews 291 (May 2015): 28–67. http://dx.doi.org/10.1016/j.ccr.2015.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mutlu Balcı, Ceylan, Süreyya Oğuz Tümay, and Serap Beşli. "ESIPT on/off switching and crystallization-enhanced emission properties of new design phenol-pyrazole modified cyclotriphosphazenes." New Journal of Chemistry 45, no. 19 (2021): 8492–505. http://dx.doi.org/10.1039/d1nj00894c.

Full text
Abstract:
Cyclophosphazene-based high-efficiency excited state intramolecular proton transfer (ESIPT) active and inactive molecules were prepared depending on the different bonding patterns of the difunctional phenol-pyrazol reagent.
APA, Harvard, Vancouver, ISO, and other styles
19

Muhammad, Raeesh, Pawan Rekha, and Paritosh Mohanty. "Aminal linked inorganic–organic hybrid nanoporous materials (HNMs) for CO2 capture and H2 storage applications." RSC Advances 6, no. 21 (2016): 17100–17105. http://dx.doi.org/10.1039/c5ra25933a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Prasanna, Dakshinamoorthy, and Vaithilingam Selvaraj. "Development of non-covalent ternary polymer–CNT composites as a novel supporting material for electrooxidation of glycerol." RSC Advances 5, no. 120 (2015): 98822–33. http://dx.doi.org/10.1039/c5ra17172e.

Full text
Abstract:
A novel ternary polymer–CNT composite containing three different monomers namely amine terminated cyclophosphazene, hexachlorocyclotriphosphazene and 2,2′-benzidinedisulfonic acid as a new catalyst support for biobased alcohol fuel cell applications.
APA, Harvard, Vancouver, ISO, and other styles
21

Xia Hu, Ling, Pan He, and Shi jiang Fang. "Study on the Synthesis and Application in the Polycarbonat of Silicone- Cyclophosphazene Flame Retardant." Open Chemical Engineering Journal 9, no. 1 (2015): 29–33. http://dx.doi.org/10.2174/1874123101509010029.

Full text
Abstract:
Silicone-cyclophosphazene (SCP) as a flame retardant was synthesized using hydroxyl terminated polydime thylsiloxane(PDMS-OH) and hexa cyclophosphazene silicone oil and phosphonitrilic chloride trimer(HCCTP) as the precursors, The properties of SCP-modified polycarbonat(PC) such as thermal stability, flame retardant properties and carbon layer after combustion were analyzed. It was found that the target product was SCP, as evidenced by infra-red spectrum (IR)and nuclear magnetic resonance(31P-NMR) spectra results. The PC/SCP composite had higher thermal stability, with higher amount of carbon
APA, Harvard, Vancouver, ISO, and other styles
22

Porwolik-Czomperlik, Iwona, Krystyna Brandt, T. Andrew Clayton, David B. Davies, Robert J. Eaton, and Robert A. Shaw. "Diastereoisomeric Singly Bridged Cyclophosphazene-Macrocyclic Compounds." Inorganic Chemistry 41, no. 19 (2002): 4944–51. http://dx.doi.org/10.1021/ic020264h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chandrasekhar, Vadapalli, Pakkirisamy Thilagar, and Balasubramanian Murugesa Pandian. "Cyclophosphazene-based multi-site coordination ligands." Coordination Chemistry Reviews 251, no. 9-10 (2007): 1045–74. http://dx.doi.org/10.1016/j.ccr.2006.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Allcock, Harry R., Karen D. Lavin, and Geoffrey H. Riding. "Ring-opening polymerization of metallocene cyclophosphazene derivatives." Macromolecules 18, no. 6 (1985): 1340–45. http://dx.doi.org/10.1021/ma00148a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chandrasekhar, Vadapalli, Gurusamy Thangavelu Senthil Andavan, Ramachandran Azhakar, and Balasubramanian Murugesa Pandian. "36- and 42-Membered cyclophosphazene-containing macrocycles." Tetrahedron Letters 47, no. 47 (2006): 8365–68. http://dx.doi.org/10.1016/j.tetlet.2006.09.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hagberg, Erik C., Mark W. Hart, Lianhui Cong, Christopher W. Allen, and Kenneth R. Carter. "Cyclophosphazene-containing Polymers as Imprint Lithography Resists." Journal of Inorganic and Organometallic Polymers and Materials 17, no. 2 (2007): 377–85. http://dx.doi.org/10.1007/s10904-007-9130-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Inoue, Kenzo, and Tomoyuki Itaya. "Synthesis and Functionality of Cyclophosphazene-Based Polymers." Bulletin of the Chemical Society of Japan 74, no. 8 (2001): 1381–95. http://dx.doi.org/10.1246/bcsj.74.1381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sournies, François, François Crasnier, Marcel Graffeuil, et al. "Spherical Cyclophosphazene Dendrimers to the Fifth Generation." Angewandte Chemie International Edition in English 34, no. 5 (1995): 578–81. http://dx.doi.org/10.1002/anie.199505781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Uslu, Aylin, and Serkan Yesilot. "ChemInform Abstract: Chiral Configurations in Cyclophosphazene Chemistry." ChemInform 46, no. 48 (2015): no. http://dx.doi.org/10.1002/chin.201548244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kaur, Tejinder, Tamanna K. Khan, and Mangalampalli Ravikanth. "Multi-Expanded Porphyrin Assemblies on Cyclophosphazene Scaffolds." European Journal of Organic Chemistry 2015, no. 14 (2015): 3157–63. http://dx.doi.org/10.1002/ejoc.201500131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kumar, Dheeraj, Jatinder Singh, and Anil J. Elias. "Chiral multidentate oxazoline ligands based on cyclophosphazene cores: synthesis, characterization and complexation studies." Dalton Trans. 43, no. 37 (2014): 13899–912. http://dx.doi.org/10.1039/c4dt01741b.

Full text
Abstract:
Chiral oxazoline derivatives of cyclophosphazenes were prepared and their complexation and catalytic studies for the asymmetric rearrangement of trichloroacetimidates to trichloroacetamides have been performed.
APA, Harvard, Vancouver, ISO, and other styles
32

Brandt, Krystyna, Iwona Porwolik, Teobald Kupka, Anna Olejnik, Robert A. Shaw, and David B. Davies. "New Lariat Ether-Type Macrocycles with Cyclophosphazene Subunits." Journal of Organic Chemistry 60, no. 23 (1995): 7433–38. http://dx.doi.org/10.1021/jo00128a014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

DIAZ, C. "Transition metal containing dendrimers based on cyclophosphazene units." Polyhedron 21, no. 9-10 (2002): 909–15. http://dx.doi.org/10.1016/s0277-5387(02)00852-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Josowicz, Mira, Jing Li, Charles F. Windisch, et al. "Doping of Poly(cyclophosphazene−benzoquinone) Films with Polyiodide." Chemistry of Materials 9, no. 5 (1997): 1285–91. http://dx.doi.org/10.1021/cm970119f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Jing, and Mira Josowicz. "Synthesis and Characterization of Electropolymerized Poly(cyclophosphazene−benzoquinone)." Chemistry of Materials 9, no. 6 (1997): 1451–62. http://dx.doi.org/10.1021/cm9701365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Allcock, Harry R., Eric N. Silverberg, and Gary K. Dudley. "Stereocontrolled Polymerization within a Cyclophosphazene Clathrate Tunnel System." Macromolecules 27, no. 4 (1994): 1033–38. http://dx.doi.org/10.1021/ma00082a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pareek, Yogita, and Mangalampalli Ravikanth. "Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies." Chemistry - A European Journal 18, no. 28 (2012): 8835–46. http://dx.doi.org/10.1002/chem.201200273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hasselbring, Reinhard, Herbert W. Roesky, Andreas Heine, Dietmar Stalke, and George M. Sheldrick. "Neue Cyclophosphazene mit Metallen der III. Hauptgruppe als Ringbausteine / New Cyclophosphazenes with Metals of Main Group III as Building Blocks." Zeitschrift für Naturforschung B 49, no. 1 (1994): 43–49. http://dx.doi.org/10.1515/znb-1994-0110.

Full text
Abstract:
Abstract Acylic silylated phosphazenes of the type HN(PR2NSiMe3)2 (1) react quantitatively with molecules MMe3 (M = Al, Ga, In) under ring formation and CH4 evolution. The ring compounds N(PPh2NSiMe3)2AlMe2 (2 a) and N(PPh2NSiMe3)2InMe2 (4 a) have been investiga­ ted by X-ray structure determination. 2a and 4a crystallize in the space groups P 1̄ and P 31, respectively; they show different conformations regarding the cyclohexane framework. NMR spectroscopy of the nuclei in the chelating phosphazene ligand indicates decreasing Lewis acidity of the metal containing fragments in the series AlMe2
APA, Harvard, Vancouver, ISO, and other styles
39

Barboiu, Mihai, Cornelia Guran, Ioana Jitaru, Marilena Cimpoesu, and Claudiu T. Supuran. "Complexes With Biologically Active Ligands. Part 71 Synthesis and Fungitoxic Activity of Metal Complexes Containing 1,3,5-tris-(8-Hydroxyquinolino)- Trichlorocyclo-Triphosphazatriene." Metal-Based Drugs 3, no. 5 (1996): 233–40. http://dx.doi.org/10.1155/mbd.1996.233.

Full text
Abstract:
Complexes containing 1,3,5-tris-(8-hydroxyquinolino)-trichlorocyclotriphosphazatriene, a new cyclophosphazene ligand, and Co(II), Cu(II) and Ni(II) were prepared. The new complexes, having the general formula [MLCl2], [ML2]Cl2, (M=Cu, Co, Ni); [NiLAc], [NiL2Ac]Ac and [ML3]X3 (M=Ni, Co, X=Cl, Ac) were characterised by elemental analysis, electronic-, IR spectroscopy, and electrical conductivity measurements. Some of them inhibited the growth of several fungi species (Aspergillus and Candida spp.)
APA, Harvard, Vancouver, ISO, and other styles
40

Coles, Simon, David Davies, Michael Hursthouse, Serkan Yeşilot, Bünyemin Çoşut, and Adem Kılıç. "Absolute structure determination as a reference for the enantiomeric resolution of racemic mixtures of cyclophosphazenes via chiral high-performance liquid chromatography." Acta Crystallographica Section B Structural Science 65, no. 3 (2009): 355–62. http://dx.doi.org/10.1107/s0108768109006120.

Full text
Abstract:
Reversed-phase chiral high-performance liquid chromatography (HPLC) is a potentially powerful technique for the enantiomeric resolution of racemic mixtures, although the elution order of enantiomers is only relative and it is necessary to fully characterize reference systems for this method to provide absolute configurational information. The enantiomeric resolution of a series of racemic di-spiro cyclotriphosphazene derivatives, N3P3 X 2[O(CH2)3NH]2 (X = Cl, Ph, SPh, NHPh, OPh) [(1)–(5), respectively] was carried out by reversed-phase chiral HPLC on a commercially available Pirkle-type chiral
APA, Harvard, Vancouver, ISO, and other styles
41

Popova, G. V., D. A. Alekperov, T. Sakurai, H. Ihara, and V. V. Kireev. "Synthesis of functional poly(amino acids) on cyclophosphazene templates." Polymer Science Series B 48, no. 4 (2006): 198–202. http://dx.doi.org/10.1134/s1560090406070116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Furer, V. L., I. I. Vandukova, C. Padie, J. P. Majoral, A. M. Caminade, and V. I. Kovalenko. "FTIR spectroscopy studies of dendrimers built from cyclophosphazene core." Vibrational Spectroscopy 44, no. 1 (2007): 89–93. http://dx.doi.org/10.1016/j.vibspec.2006.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Paul, Yash, and Sushil K. Pandey. "Synthesis and characterization of cyclophosphazene complexes of zirconium(IV)." Journal of Coordination Chemistry 61, no. 16 (2008): 2655–62. http://dx.doi.org/10.1080/00958970801958527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Okutan, Elif, Bünyemin Çoşut, and Serkan Yeşilot. "Synthesis and properties of fullerene (C60) substituted cyclophosphazene derivatives." Inorganic Chemistry Communications 49 (November 2014): 1–4. http://dx.doi.org/10.1016/j.inoche.2014.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shin, Young Jae, Young Rok Ham, Sun Hee Kim, et al. "Application of cyclophosphazene derivatives as flame retardants for ABS." Journal of Industrial and Engineering Chemistry 16, no. 3 (2010): 364–67. http://dx.doi.org/10.1016/j.jiec.2009.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Inoue, Kenzo, and Tomoyuki Itaya. "ChemInform Abstract: Synthesis and Functionality of Cyclophosphazene-Based Polymers." ChemInform 32, no. 44 (2010): no. http://dx.doi.org/10.1002/chin.200144255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Köhler, Jens, Sebastian Kühl, Helmut Keul, Martin Möller, and Andrij Pich. "Synthesis and characterization of polyamine-based cyclophosphazene hybrid microspheres." Journal of Polymer Science Part A: Polymer Chemistry 52, no. 4 (2013): 527–36. http://dx.doi.org/10.1002/pola.27028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yenilmez Çiftçi, Gönül. "Synthesis and characterization of per-substituted spermine-bridged cyclophosphazene derivatives: the first example of syn/anti conformational polymorphism in a bridged cyclophosphazene." Inorganic Chemistry Communications 7, no. 12 (2004): 1258–60. http://dx.doi.org/10.1016/j.inoche.2004.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Poscher, Vanessa, George S. Pappas, Oliver Brüggemann, Ian Teasdale, and Yolanda Salinas. "Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor." International Journal of Molecular Sciences 21, no. 22 (2020): 8552. http://dx.doi.org/10.3390/ijms21228552.

Full text
Abstract:
Porous organosilica microparticles consisting of silane-derived cyclophosphazene bridges were synthesized by a surfactant-mediated sol-gel process. Starting from the substitution of hexachlorocyclotriphosphazene with allylamine, two different precursors were obtained by anchoring three or six alkoxysilane units, via a thiol-ene photoaddition reaction. In both cases, spherical, microparticles (size average of ca. 1000 nm) with large pores were obtained, confirmed by both, scanning and transmission electron microscopy. Particles synthesized using the partially functionalized precursor containing
APA, Harvard, Vancouver, ISO, and other styles
50

Kubono, Koji, Noriko Asaka, Tooru Taga, Seiji Isoda, and Takashi Kobayashi. "Selective clathration in a cage-type host lattice of cyclophosphazene." Journal of Materials Chemistry 4, no. 2 (1994): 291. http://dx.doi.org/10.1039/jm9940400291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!