To see the other types of publications on this topic, follow the link: Cytochrome b6f.

Journal articles on the topic 'Cytochrome b6f'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cytochrome b6f.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cramer, W. A., S. E. Martinez, P. N. Furbacher, D. Huang, and J. L. Smith. "The cytochrome b6f complex." Current Opinion in Structural Biology 4, no. 4 (1994): 536–44. http://dx.doi.org/10.1016/s0959-440x(94)90216-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saint-Marcoux, Denis, Francis-André Wollman, and Catherine de Vitry. "Biogenesis of cytochrome b6 in photosynthetic membranes." Journal of Cell Biology 185, no. 7 (2009): 1195–207. http://dx.doi.org/10.1083/jcb.200812025.

Full text
Abstract:
In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes.
APA, Harvard, Vancouver, ISO, and other styles
3

Cramer, William A., Glenda M. Soriano, Huamin Zhang, Michael V. Ponamarev, and Janet L. Smith. "The cytochrome b6f complex. Novel aspects." Physiologia Plantarum 100, no. 4 (1997): 852–62. http://dx.doi.org/10.1034/j.1399-3054.1997.1000411.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cramer, William A., Glenda M. Soriano, Huamin Zhang, Michael V. Ponamarev, and Janet L. Smith. "The cytochrome b6f complex. Novel aspects." Physiologia Plantarum 100, no. 4 (1997): 852–62. http://dx.doi.org/10.1111/j.1399-3054.1997.tb00011.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zakharov, Stanislav D., Saif S. Hasan, Adrien Chauvet, Valentyn Stadnytsky, Sergei Savikhin, and William A. Cramer. "Dielectric Heterogeneity in the Cytochrome B6F Complex." Biophysical Journal 106, no. 2 (2014): 371a. http://dx.doi.org/10.1016/j.bpj.2013.11.2101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malone, Lorna A., Matthew S. Proctor, Andrew Hitchcock, C. Neil Hunter, and Matthew P. Johnson. "Cytochrome b6f – Orchestrator of photosynthetic electron transfer." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1862, no. 5 (2021): 148380. http://dx.doi.org/10.1016/j.bbabio.2021.148380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Buchert, Felix, Laura Mosebach, Philipp Gäbelein, and Michael Hippler. "PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow." Biochemical Journal 477, no. 9 (2020): 1631–50. http://dx.doi.org/10.1042/bcj20190914.

Full text
Abstract:
Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes — via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.
APA, Harvard, Vancouver, ISO, and other styles
8

Hauska, Günter, Edelgard Herold, Claudia Huber, Wolfgang Nitschke, and Danuse Sofrova. "Stigmatellin Affects Both Hemes of Cytochrome b in Cytochrome b6f/bc1-Complexes." Zeitschrift für Naturforschung C 44, no. 5-6 (1989): 462–67. http://dx.doi.org/10.1515/znc-1989-5-620.

Full text
Abstract:
Abstract Stigmatellin causes spectral changes of both hemes of cytochrome b or b6 in cytochrome bc1/b6f-complexes. It also affects the redox potentials of all three hemes, including cytochrome c l and f, in addition to the dramatic rise of the redox potential it exerts on the Rieske FeS-center. We conclude that stigmatellin changes the overall conformation of the complexes.
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, John F. "Cytochrome b6f: structure for signalling and vectorial metabolism." Trends in Plant Science 9, no. 3 (2004): 130–37. http://dx.doi.org/10.1016/j.tplants.2004.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kirchhoff, Helmut, Meng Li, and Sujith Puthiyaveetil. "Sublocalization of Cytochrome b6f Complexes in Photosynthetic Membranes." Trends in Plant Science 22, no. 7 (2017): 574–82. http://dx.doi.org/10.1016/j.tplants.2017.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stroebel, David, Yves Choquet, Jean-Luc Popot, and Daniel Picot. "An atypical haem in the cytochrome b6f complex." Nature 426, no. 6965 (2003): 413–18. http://dx.doi.org/10.1038/nature02155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yamashita, Eiki, Danas Baniulis, Anna I. Zatsman, Michael P. Hendrich, and William A. Cramer. "Unique Structure Aspects of the Cytochrome b6f Complex." Biophysical Journal 96, no. 3 (2009): 566a. http://dx.doi.org/10.1016/j.bpj.2008.12.3709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Choquet, Y., K. Wostrikoff, B. Rimbault, et al. "Assembly-controlled regulation of chloroplast gene translation." Biochemical Society Transactions 29, no. 4 (2001): 421–26. http://dx.doi.org/10.1042/bst0290421.

Full text
Abstract:
Studies of the biogenesis of the photosynthetic protein complexes in the unicellular green alga Chlamydomonas reinhardtii have pointed to the importance of the concerted expression of nuclear and chloroplast genomes. The accumulation of chloroplast- and nuclear-encoded subunits is concerted, most often as a result of the rapid proteolytic disposal of unassembled subunits, but the rate of synthesis of some chloroplast-encoded subunits from photosynthetic protein complexes, designed as CES proteins (Controlled by Epistasy of Synthesis), is regulated by the availability of their assembly partners from the same complex. Cytochrome f, a major subunit of the cytochrome b6f complex is a model protein for the study of the CES process. In the absence of subunit IV, another subunit of the cytochrome b6f complex, its synthesis is decreased by 90%. This results from a negative autoregulation of cytochrome f translation initiation, mediated by a regulatory motif carried by the C-terminal domain of the unassembled protein [Choquet, Stern, Wostrikoff, Kuras, Girard-Bascou and Wollman (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4380–4385]. Using site-directed mutagenesis, we have characterized this regulatory motif. We discuss the possible implications regarding the mechanism of the CES process for cytochrome f expression. We have studied the possible generalization of this mechanism to other CES proteins.
APA, Harvard, Vancouver, ISO, and other styles
14

Mulkidjanian, Armen Y. "Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797, no. 12 (2010): 1858–68. http://dx.doi.org/10.1016/j.bbabio.2010.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hasan, S. Saif, and William A. Cramer. "Internal Lipid Architecture of the Hetero-Oligomeric Cytochrome b6f Complex." Structure 22, no. 7 (2014): 1008–15. http://dx.doi.org/10.1016/j.str.2014.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Malnoë, Alizée, Jacqueline Girard-Bascou, Frauke Baymann, et al. "Photosynthesis with simplified cytochrome b6f complexes: Are all hemes required?" Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (July 2010): 19. http://dx.doi.org/10.1016/j.bbabio.2010.04.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hasan, Syed Saif, Eiki Yamashita, Danas Baniulis, and William A. Cramer. "An Anhydrous Proton Transfer Pathway in the Cytochrome B6F Complex." Biophysical Journal 104, no. 2 (2013): 488a. http://dx.doi.org/10.1016/j.bpj.2012.11.2689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Georgiev, G. As, Sl Ivanova, A. Jordanova, et al. "Interaction of monogalactosyldiacylglycerol with cytochrome b6f complex in surface films." Biochemical and Biophysical Research Communications 419, no. 4 (2012): 648–51. http://dx.doi.org/10.1016/j.bbrc.2012.02.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zakharov, Stanislav, Yuko Misumi, Genji Kurisu, and William A. Cramer. "Interaction of FNR with the Cytochrome b6f Complex: Thermodynamic Parameters." Biophysical Journal 118, no. 3 (2020): 132a. http://dx.doi.org/10.1016/j.bpj.2019.11.852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wenk, Stephan-Olav, Dirk Schneider, Ute Boronowsky, et al. "Functional implications of pigments bound to a cyanobacterial cytochrome b6f complex." FEBS Journal 272, no. 2 (2004): 582–92. http://dx.doi.org/10.1111/j.1742-4658.2004.04501.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Reisinger, Veronika, Alexander P. Hertle, Matthias Plöscher, and Lutz A. Eichacker. "Cytochrome b6f is a dimeric protochlorophyll a binding complex in etioplasts." FEBS Journal 275, no. 5 (2008): 1018–24. http://dx.doi.org/10.1111/j.1742-4658.2008.06268.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sujak, A., F. Drepper, and W. Haehnel. "Spectroscopic studies on electron transfer between plastocyanin and cytochrome b6f complex." Journal of Photochemistry and Photobiology B: Biology 74, no. 2-3 (2004): 135–43. http://dx.doi.org/10.1016/j.jphotobiol.2004.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Calzadilla, Pablo I., Jiao Zhan, Pierre Sétif, et al. "The Cytochrome b6f Complex Is Not Involved in Cyanobacterial State Transitions." Plant Cell 31, no. 4 (2019): 911–31. http://dx.doi.org/10.1105/tpc.18.00916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Szczepaniak, A., D. Huang, T. W. Keenan, and W. A. Cramer. "Electrostatic destabilization of the cytochrome b6f complex in the thylakoid membrane." EMBO Journal 10, no. 10 (1991): 2757–64. http://dx.doi.org/10.1002/j.1460-2075.1991.tb07824.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Black, Michael T., William R. Widger, and William A. Cramer. "Large-scale purification of active cytochrome b6f complex from spinach chloroplasts." Archives of Biochemistry and Biophysics 252, no. 2 (1987): 655–61. http://dx.doi.org/10.1016/0003-9861(87)90071-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

El-Demerdash, Mohamed, Johann Salnikow, and Joachim Vater. "Evidence for a cytochrome f-Rieske protein subcomplex in the cytochrome b6f system from spinach chloroplasts." Archives of Biochemistry and Biophysics 260, no. 1 (1988): 408–15. http://dx.doi.org/10.1016/0003-9861(88)90464-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cramer, W. A., H. Zhang, J. Yan, and G. Kurisu. "Binding sites of lipophilic quinone and quinone analogue inhibitors in the cytochrome b6f complex of oxygenic photosynthesis." Biochemical Society Transactions 33, no. 5 (2005): 921–23. http://dx.doi.org/10.1042/bst0330921.

Full text
Abstract:
The main structural features of the cytochrome b6f complex, solved to 3.0–3.1 Å (1 Å=10−10 m) in the cyanobacterium Mastigocladus laminosus and the green alga Chlamydomonas reinhardtii are discussed. The discussion is focused on the binding sites of plastoquinone and quinone analogue inhibitors discerned in the structure. These sites mark the pathway(s) of quinone translocation across the complex.
APA, Harvard, Vancouver, ISO, and other styles
28

Ermakova, Maria, Robert T. Furbank, and Susanne von Caemmerer. "Improving Light Use Efficiency in C4 Plants by Increasing Electron Transport Rate." Proceedings 36, no. 1 (2020): 203. http://dx.doi.org/10.3390/proceedings2019036203.

Full text
Abstract:
C4 plants play a key role in world agriculture and strategies to manipulate and enhance C4 photosynthesis have the potential for major agricultural impacts. The C4 photosynthetic pathway is a biochemical CO2 concentrating mechanism that requires the coordinated functioning of mesophyll and bundle sheath cells of leaves. Chloroplast electron transport in C4 plants is shared between the two cell types; it provides resources for CO2 fixation therefore underpinning the efficiency of photosynthesis. Using the model monocot C4 species Setaria viridis (green foxtail millet) we demonstrated that the Cytochrome (Cyt) b6f complex regulates the electron transport capacity and thus the rate of CO2 assimilation at high light and saturating CO2. Overexpression of the Cyt b6f in both mesophyll and bundle sheath cells results in a higher electron throughput and allows better light conversion efficiency in both photosystems. Importantly, increased Cyt b6f abundance in leaves provides higher rates of C4 photosynthesis without marked changes in Rubisco or chlorophyll content. Our results demonstrate that increasing the rate of electron transport is a viable strategy for improving the light conversion efficiency in C4 crop species like maize and sorghum.
APA, Harvard, Vancouver, ISO, and other styles
29

KURISU, Genji. "Photosynthetic Electron Transfer around Cytochrome b6f Complex Based on its Crystal Structure." Seibutsu Butsuri 44, no. 3 (2004): 130–33. http://dx.doi.org/10.2142/biophys.44.130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hasan, S. Saif, Jason T. Stofleth, Eiki Yamashita, and William A. Cramer. "Lipid-Induced Conformational Changes within the Cytochrome b6f Complex of Oxygenic Photosynthesis." Biochemistry 52, no. 15 (2013): 2649–54. http://dx.doi.org/10.1021/bi301638h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mohamed Shallan, Magdy Abdel-Aleem, Boris Radau, Johann Salnikow, and Joachim Vater. "Topological analysis of components of the cytochrome b6f complex by chemical crosslinking." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1057, no. 1 (1991): 64–68. http://dx.doi.org/10.1016/s0005-2728(05)80084-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tikhonov, Alexander N. "The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways." Plant Physiology and Biochemistry 81 (August 2014): 163–83. http://dx.doi.org/10.1016/j.plaphy.2013.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

de Lacroix de Lavalette, Agnès, Giovanni Finazzi, and Francesca Zito. "b6f-Associated Chlorophyll: Structural and Dynamic Contribution to the Different Cytochrome Functions†." Biochemistry 47, no. 19 (2008): 5259–65. http://dx.doi.org/10.1021/bi800179b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Breyton, Cécile. "The cytochrome b6f complex: structural studies and comparison with the bc1 complex." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1459, no. 2-3 (2000): 467–74. http://dx.doi.org/10.1016/s0005-2728(00)00185-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Saif Hasan, S., and William A. Cramer. "On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex." Physical Chemistry Chemical Physics 14, no. 40 (2012): 13853. http://dx.doi.org/10.1039/c2cp41386h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kurisu, G. "Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity." Science 302, no. 5647 (2003): 1009–14. http://dx.doi.org/10.1126/science.1090165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Darrouzet, Elisabeth, Jason W. Cooley, and Fevzi Daldal. "The Cytochrome bc1Complex and its Homologue the b6f Complex: Similarities and Differences." Photosynthesis Research 79, no. 1 (2004): 25–44. http://dx.doi.org/10.1023/b:pres.0000011926.47778.4e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lebas, Audrey, Francesca Zito, Fabrice Rappaport, Frauke Baymann, and Daniel Picot. "Microanalysis of the quinone reducing site Qi from the cytochrome b6f complex." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817 (October 2012): S148. http://dx.doi.org/10.1016/j.bbabio.2012.06.390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hasan, S. Saif, Eiki Yamashita, and William A. Cramer. "Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1827, no. 11-12 (2013): 1295–308. http://dx.doi.org/10.1016/j.bbabio.2013.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hasan, S. Saif, Stanislav D. Zakharov, Eiki Yamashita, H. Bohme∗, and William A. Cramer. "Exciton Interactions Between Hemes bn and bp in the Cytochrome b6f Complex." Biophysical Journal 98, no. 3 (2010): 564a. http://dx.doi.org/10.1016/j.bpj.2009.12.3057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hald, S., P. Gallois, and G. Johnson. "Regulation of Cytochrome b6f complex in response to NADP(H)-redox poise." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146, no. 4 (2007): S260—S261. http://dx.doi.org/10.1016/j.cbpa.2007.01.658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hasan, S. Saif, Elizabeth A. Proctor, Eiki Yamashita, Nikolay V. Dokholyan, and William A. Cramer. "Traffic within the Cytochrome b6f Lipoprotein Complex: Gating of the Quinone Portal." Biophysical Journal 107, no. 7 (2014): 1620–28. http://dx.doi.org/10.1016/j.bpj.2014.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mulkidjanian, Armen Y., Sergey S. Klishin, and Natalia E. Voskoboynikova. "S13/3 Activated q-cycle as a common mechanism for the cytochrome bc1 and cytochrome b6f complexes." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777 (July 2008): S89. http://dx.doi.org/10.1016/j.bbabio.2008.05.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Agarwal, Rachna, and Adrien A. P. Chauvet. "Ultrafast dynamics of the photo-excited hemes b and cn in the cytochrome b6f complex." Physical Chemistry Chemical Physics 19, no. 4 (2017): 3287–96. http://dx.doi.org/10.1039/c6cp08077d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kutoh, E., and N. Sone. "Quinol-cytochrome c oxidoreductase from the thermophilic bacterium PS3. Purification and properties of a cytochrome bc1(b6f) complex." Journal of Biological Chemistry 263, no. 18 (1988): 9020–26. http://dx.doi.org/10.1016/s0021-9258(18)68410-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Baniulis, Danas, S. Saif Hasan, Jason T. Stofleth, and William A. Cramer. "Mechanism of Enhanced Superoxide Production in the Cytochrome b6f Complex of Oxygenic Photosynthesis." Biochemistry 52, no. 50 (2013): 8975–83. http://dx.doi.org/10.1021/bi4013534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yan, Jiusheng, Yulong Liu, Dazhang Mao, Liangbi Li та Tingyun Kuang. "The presence of 9-cis-β-carotene in cytochrome b6f complex from spinach". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1506, № 3 (2001): 182–88. http://dx.doi.org/10.1016/s0005-2728(01)00212-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, D., R. M. Everly, R. H. Cheng, et al. "Characterization of the Chloroplast Cytochrome b6f Complex as a Structural and Functional Dimer." Biochemistry 33, no. 14 (1994): 4401–9. http://dx.doi.org/10.1021/bi00180a038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chain, R. K., and R. Malkin. "Functional activities of monomeric and dimeric forms of the chloroplast cytochrome b6f complex." Photosynthesis Research 46, no. 3 (1995): 419–26. http://dx.doi.org/10.1007/bf00032296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Johnson, Matthew P., Cvetelin Vasilev, John D. Olsen, and C. Neil Hunter. "Nanodomains of Cytochrome b6f and Photosystem II Complexes in Spinach Grana Thylakoid Membranes." Plant Cell 26, no. 7 (2014): 3051–61. http://dx.doi.org/10.1105/tpc.114.127233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!