To see the other types of publications on this topic, follow the link: Cytology – Research.

Dissertations / Theses on the topic 'Cytology – Research'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Cytology – Research.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kosmacek, Elizabeth Anne Ianzini Fiorenza Mackey Michael A. "Live cell imaging technology development for cancer research." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guck, Jochen Reinhold. "Optical deformability micromechanics from cell research to biomedicine /." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walton, Carol Julie. "Stakeholder influences on the commercialisation and delivery of cell-based medicinal products." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tiwari, Shashank Shekhar. "The ethics and governance of stem cell clinical research in India." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/14585/.

Full text
Abstract:
India is rapidly becoming established as a major player in the stem cell sector. However, concerns have been raised about the use of unproven stem cell therapies and the exploitation of parents for cord blood banking. This study aims to explore the nature of stem cell activities, how key stakeholders generate expectations around them and frame the ethical issues they raise, and why the biomedical governance system is unable to regulate these emerging practices. The study involved a survey, documentary analysis and qualitative interviews with key scientists, clinicians, representatives of firms and policymakers. The thesis observes that, unlike international commentaries which largely focus on embryonic stem cell treatments, in India it is adult and cord blood stem cells which are dominant in research and clinical settings. Expectations are configured on the basis that stem cells have the potential to: solve the problem of organ shortage; help patients with ailments; provide affordable health care; and establish India as a global player. The creation of expectations is ethically problematic given the potential health risks and economic exploitation of both native and international patients. However, the ethically contested activities are justified by clinicians on the basis that the Helsinki Declaration allows to use an experimental therapy; there are many 'desperate patients' demanding these treatments; and adult stem cells are safe. To date, the government of India appears to be unable to prevent these activities. Contrary to suggestions in previous literature and by some informants that new legislation is needed to address the problem, this thesis finds that state-led mechanisms for biomedical governance lack the ability to implement existing oversight measures. This implementation gap is partly because other forms of governance are not strong enough and partly because there are high expectations at state level aimed at establishing India as a global player in the stem cell sector.
APA, Harvard, Vancouver, ISO, and other styles
5

Alsugair, Khaled A. S. "Feasibility of artificial cells in molecular sieve chromatography." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

楊可儀 and Ho-yee Yeung. "Study on the function and regulation of stanniocalcin in mouse neuroblastoma cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31245043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hüfner, Anna. "Gold nanoparticles explore cells : molecular insights into cellular characteristics and processes using surface-enhanced Raman spectroscopy." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Terry, and University of Lethbridge Faculty of Arts and Science. "Mathematical modeling of eukaryotic gene expression." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, 2010, 2010. http://hdl.handle.net/10133/2567.

Full text
Abstract:
Using the Gillespie algorithm, the export of the mRNA molecules from their transcription site to the nuclear pore complex is simulated. The effect of various structures in the nu- cleus on the efficiency of export is discussed. The results show that having some of the space filled by chromatin near the mRNA synthesis site shortens the transport time. Next, the complete eukaryotic gene expression including transcription, splicing, mRNA export, translation, and mRNA degradation is modeled using delay stochastic simulation. This allows for the study of stochastic effects during the process and on the protein production rate patterns. Various protein production patterns can be produced by adjusting the poly-A tail length of the mRNA and the promoter efficiency of the gene. After that, the opposing effects of the chromatin density on the seeking time of the transcription factors for the promoter and the exit time of the mRNA product are discussed.<br>xi, 102 leaves ; 28 cm
APA, Harvard, Vancouver, ISO, and other styles
9

Girondi, Camila Miorelli. "Síntese e caracterização de ácido-all-trans-retinoico incorporado a nanofibras poliméricas e seus efeitos sobre células de osteossarcoma." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154479.

Full text
Abstract:
Submitted by Camila Girondi (camila.girondi@gmail.com) on 2018-07-03T20:30:17Z No. of bitstreams: 1 Dissertação 28.06 COM FICHA CATALOGRÀFICA.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5)<br>Approved for entry into archive by Silvana Alvarez null (silvana@ict.unesp.br) on 2018-07-10T19:06:46Z (GMT) No. of bitstreams: 1 girondi_cm_me_sjc.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5)<br>Made available in DSpace on 2018-07-10T19:06:46Z (GMT). No. of bitstreams: 1 girondi_cm_me_sjc.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5) Previous issue date: 2018-05-02<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)<br>As nanofibras (NF) podem ser sintetizadas por meio de eletrofiação, um método simples que permite incorporação de fármacos em biopolímeros que apresentam a vantagem de serem liberados de forma gradual. Policaprolactona (PCL) apresenta a vantagem de poder ser eletrofiada permitindo a incorporação de fármacos. Os ácidos retinoicos são fármacos empregados no tratamento de osteossarcoma, mas, apresentam efeitos colaterais. O ATRA (all-trans-retinoic-acid) é o mais comum entre os retinoides. Os objetivos deste estudo foram: sintetizar e caracterizar NF, incorporar o fármaco a elas e verificar a liberação ao meio de cultura; realizar testes de citoxicidade e genotoxicidade tais como: crescimento, integridade, viabilidade e micronúcleo de células MG63 tratadas com NF incorporada com ATRA e analisar a secreção das citocinas pró inflamatórias: IL-1β, IL-6 e TNF-α por meio do teste ELISA. As NF sintetizadas por meio da eletrofiação foram caracterizadas morfologicamente e bioquimicamente por meio de microscopia eletrônica de varredura (MEV) e estudo do espectro de infravermelho da transformada de Fourrier (FTIR): Os testes in vitro foram realizados utilizando uma linhagem de células imortalizadas de osteossarcoma, MG63. Os ensaios incluídos nesse estudo foram divididos em grupos compostos por: [C (controle puro), ATRA (controle positivo), NF (controle negativo) e NF + ATRA (grupo experimental).] Em todos os grupos foram realizados testes de viabilidade celular (MTT), micronúcleo e ELISA sob os tempos de 3, 7 e 14 dias. A liberação do fármaco através do sistema de NF+ATRA foi comprovada pelo FTIR. Os demais resultados encontrados foram avaliados através do teste ANOVA one-way, no qual o método apresentou-se eficiente, mostrando diferença estatística de p=0,00, sendo signficante para todos os períodos de tempo nos testes de MTT e MN, além de ser verificada a secreção de citocinas proinflamatórias IL-1β e IL-6, comprovando os efeitos citotóxicos e genotoxicos sob células MG63 mostrando a efetividade da técnica. Podendo ser uma alternativa para o tratamento.<br>Nanofibers (NF) can be synthesized by electro-spinning, a simple method that allows incorporation of drugs into biopolymers that have the advantage of being released gradually. Polycaprolactone (PCL) has the advantage that it can be electrophied allowing the incorporation of drugs. Retinoic acids are drugs used in the treatment of osteosarcoma, but have side effects. ATRA (all-trans-retinoicacid) is the most common retinoid. The objectives of this study were: to synthesize and characterize NF, to incorporate the drug to them and to verify the release to the culture medium; perform cytotoxicity and genotoxicity tests such as: growth, integrity, viability and micronucleus of N63-treated NF-treated cells with ATRA and to analyze the secretion of pro-inflammatory cytokines: IL-1β, IL-6 and TNFα by the ELISA . The NF synthesized by electrophilation were characterized morphologically and biochemically by scanning electron microscopy (SEM) and Fourrier Transform Infrared Spectrum (FTIR) study: In vitro tests were performed using an immortalized osteosarcoma cell line, MG63. The trials included in this study were divided into groups composed of: C (pure control), ATRA (positive control), NF (negative control) and NF + ATRA (experimental group). All groups were tested for cell viability (MTT), micronucleus and ELISA under the times of 3, 7 and 14 days. Release of the drug through the NF + ATRA system was confirmed by FTIR. The other results were evaluated using the oneway ANOVA test, in which the method was efficient, showing a statistical difference of p = 0.00, being significant for all time periods in the MTT and MN tests, besides the secretion of proinflammatory cytokines IL-1β and IL-6, proving the cytotoxic and genotoxic effects under MG63 cells, showing the effectiveness of the technique. It may be an alternative to treatment
APA, Harvard, Vancouver, ISO, and other styles
10

Maslivec, Amy. "Age related changes in the mechanisms contributing to head stabilisation, and whole body stability during steady state gait and gait initiation." Thesis, University of Cumbria, 2018. http://insight.cumbria.ac.uk/id/eprint/3752/.

Full text
Abstract:
Head stabilisation during gait related tasks is thought to be fundamental to whole body stability, but this has received little attention in the older population. There is a need to examine any age related changes in neuromechanical mechanisms underpinning head stabilisation that may challenge the control of head stability, and consequently whole body stability. The present Thesis examined the mechanisms contributing to head stabilisation, and whole body stability during two gait tasks, steady state gait and gait initiation in young and older females, with the overall aim of contributing to negating fall risk. Four studies were designed to examine a) head position and walking speed on gait stability during steady state gait; b) neuromechanical mechanisms underpinning head stabilisation during gait initiation; c) head position on whole body stability during gait initiation; and d) head stabilisation during gait initiation at different speeds. Results showed that a) gait stability, was unaffected by head position and different walking speeds during steady state gait, b) decreased head stability in older individuals during gait initiation can be attributed to a deterioration of the neuromechanical mechanisms relating to head stability, c) free head movement during gait initiation does not affect head stabilisation or whole body stability but it does affect gait parameters, while d) initiating gait at faster than comfortable speeds compromises head stabilisation and reduces whole body stability in older individuals. Collectively, these results demonstrate that older individuals adopt an increased head flexion position when walking, while impaired head stability can be attributed to deterioration of the function of their neuromechanical mechanisms compared to their younger counterparts during gait tasks at comfortable speeds. These findings provide an understanding of the effect head stabilisation can have on older adults’ gait and on their fall risk during gait and gait initiation.
APA, Harvard, Vancouver, ISO, and other styles
11

Thomas, Neil. "The effects of eye movements on postural control in young and older adults." Thesis, University of Cumbria, 2018. http://insight.cumbria.ac.uk/id/eprint/3755/.

Full text
Abstract:
Eye movements are used day-to-day to acquire visual information. Vision is also used for postural control. There are growing indications eye movements can affect postural control. However, this has not been investigated in older adults, which is surprising given the high incidence of falls in older populations. The present thesis aims to address this. The first experimental chapter explores the effects of eye movements on balance during standing in young and older adults. The findings show decreased stability during smooth pursuits, whereas saccades maintained stability to that when fixating a static target. The older adults matched the younger groups performance throughout. The second experimental chapter explores the effects of smooth pursuits and saccades on balance during locomotion in young and older adults. Smooth pursuits were shown to decrease stability, whilst saccades maintained stability compared to fixating a static target. The effects of the eye movements were similar in the older adults. However, the elders exhibited lower baseline stability. The third experimental chapter explores the effects of tracking a real-world stimulus (another person known as `pedestrian') on balance control during locomotion. The pedestrian could be standing still or walking. Fixating the stationary and the walking pedestrian decreased stability similarly when compared to free gaze when the pedestrian was not present. To determine whether these results were transferable to natural gaze rather than instructed gaze, the fourth experimental chapter explores free gaze patterns in a similar real-world environment. Both the young and older adults typically fixated the pedestrian when he was standing still and walking, but began to ignore him once he had walked away from their direction heading. Therefore, experiment 3 behaviour was transferable to natural gaze patterns. The older adults also adopted a more cautious approach by fixating regions on the ground initially, and for longer, before looking to their direction heading.
APA, Harvard, Vancouver, ISO, and other styles
12

Favara, David M. "The biology of ELTD1/ADGRL4 : a novel regulator of tumour angiogenesis." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:0d00af0a-bb43-44bc-ba0b-1f8acbe34bc5.

Full text
Abstract:
<strong>Background:</strong> Our laboratory identified ELTD1, an orphan GPCR belonging to the adhesion GPCR family (aGPCR), as a novel regulator of angiogenesis and a potential anti-cancer therapeutic target. ELTD1 is normally expressed in both endothelial cells and vascular smooth muscle cells and expression is significantly increased in the tumour vasculature. The aim of this project was to analyse ELTD1's function in endothelial cells and its role in breast cancer. <strong>Method:</strong> 62 sequenced vertebrate genomes were interrogated for ELTD1 conservation and domain alterations. A phylogenetic timetree was assembled to establish time estimates for ELTD1's evolution. After ELTD1 silencing, mRNA array profiling was performed on primary human umbilical vein endothelial cells (HUVECs) and validated with qPCR and confocal microscopy. ELTD1's signalling was investigated by applying the aGPCR ‘Stinger/tethered-agonist Hypothesis'. For this, truncated forms of ELTD1 and peptides analogous to the proposed tethered agonist region were designed. FRET-based 2<sup>nd</sup> messenger (Cisbio IP-1;cAMP) and luciferase-reporter assays (NFAT; NFÎoB; SRE; SRF-RE; CREB) were performed to establish canonical GPCR activation. To further investigate ELTD1's role in endothelial cells, ELTD1 was stably overexpressed in HUVECS. Functional angiogenesis assays and mRNA array profiling were then performed. To investigate ELTD1 in breast cancer, a panel of cell lines representative of all molecular subtypes were screened using qPCR. Furthermore, an exploratory pilot study was performed on matched primary and regional nodal secondary breast cancers (n=43) which were stained for ELTD1 expression. Staining intensity was then scored and compared with relapse free survival and overall survival. <strong>Results:</strong> ELTD1 arose 435 million years ago (mya) in bony fish and is present in all subsequent vertebrates. ELTD1 has 3 evolutionary variants of which 2 are most common: one variant with 3 EGFs and a variant with 2 EGFs. Additionally, ELTD1 may be ancestral to members of aGPCR family 2. HUVEC mRNA expression profiling after ELTD1 silencing showed upregulation of the mitochondrial citrate transporter SLC25A1, and ACLY which converts cytoplasmic citrate to Acetyl CoA, feeding fatty acid and cholesterol synthesis, and acetylation. A review of lipid droplet (fatty acid and cholesterol) accumulation by confocal microscopy and flow cytometry (FACS) revealed no changes with ELTD1 silencing. Silencing was also shown to affect the Notch pathway (downregulating the Notch ligand JAG1 and target gene HES2; upregulating the Notch ligand DLL4) and inducing KIT, a mediator of haematopoietic (HSC) and endothelial stem cell (ESC) maintenance. Signalling experiments revealed that unlike other aGPCRs, ELTD1 does not couple to any canonical GPCR pathways (Gαi, Gαs, Gαq, Gα12/13). ELTD1 overexpression in HUVECS revealed that ELTD1 induces an endothelial tip cell phenotype by promoting sprouting and capillary formation, inhibiting lumen anastomoses in mature vessels and lowering proliferation rate. There was no effect on wound healing or adhesion to angiogenesis associated matrix components. Gene expression changes following ELTD1 overexpression included upregulation of angiogenesis associated ANTRX1 as well as JAG1 and downregulation of migration associated CCL15 as well as KIT and DLL4. In breast cancer, none of the representative breast cancer cell lines screened expressed ELTD1. ELTD1 breast cancer immunohistochemistry revealed higher levels of vascular ELTD1 staining intensity within the tumour stroma contrasted to normal stroma and expression within tumour epithelial cells. Additionally, ELTD1 expression in tumour vessels was differentially expressed between the primary breast cancer microenvironment and that of the matched regional node. Due to the small size of the pilot study population, survival comparisons between the various subgroups did not yield significant results. <strong>Conclusion:</strong> ELTD1 is a novel regulator of endothelial metabolism through its suppression of ACLY and the related citrate transporter SLC25A1. ELTD1 also represses KIT, which is known to mediate haematopoietic and endothelial progenitors stem cell maintenance, a possible mechanism through which endothelial cells maintain terminal endothelial differentiation. ELTD1 does not signal like other adhesion GPCRS with CTF and FL forms of ELTD1 not signalling canonically. Additionally, ELTD1 regulates various functions of endothelial cell behaviour and function, inducing an endothelial tip cell phenotype and is highly evolutionarily conserved. Lastly, ELTD1 is differentially expressed in tumour vessels between primary breast cancer and regional nodal metastases and is also expressed in a small subset of breast cancer cells in vivo despite no cancer cell lines expressing ELTD1. The pilot study investigating ELTD1 in the primary breast cancer and regional involved nodes will be followed up with a larger study including the investigation of ELTD1 in distant metastases.
APA, Harvard, Vancouver, ISO, and other styles
13

Lu, Heng. "Development of droplet-based microfluidic tools for toxicology and cancer research." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB064.

Full text
Abstract:
Ce projet de thèse portait sur le développement d’outils microfluidiques pour la toxicologie et la recherche contre le cancer. En permettant l’analyse simultanée d’un très grand nombre de réactions biologiques ou chimiques réalisés dans des compartiments indépendants (ie. gouttelettes), la microfluidique de gouttes offre une sensibilité de détection et une précision sans précédent pour l’analyse de molécules biologiques, telles que l’ADN ou les Anticorps, en comparaison des expériences réalisées conventionnellement en tubes ou en microplaques (essais en « bulk » ou volume). Ce format permet également de réaliser des expériences à très haut débit et est particulièrement pertinent pour la toxicologie, où des analyses robustes de l’effet des médicaments sont nécessaires. De même, ces procédures sont également très adaptées à l’analyse de cellules uniques pour le séquençage ADN ou ARN et l’épigénomique. Tout cela fait de la microfluidique en goutte un outil puissant pour la toxicologie et la recherche sur le cancer. En premier temps, une méthode du comptage précise des cellules encapsulée dans des microgouttelettes, nommée « hémocytométrie microfluidique », a été développée. Un nouvel algorithme de comptage a été proposé. Des cellules bactériennes (Escherichia Coli) et des cellules de 2 lignées humaines différentes (HL60 and H1975) ont été testées. Le nombre de chaque type de cellules a été déterminé avec une haute corrélation entre la théorie (basée sur la distribution de Poisson) et les résultats expérimentaux. Avec ces résultats robustes, un protocole de microfluidique en goutte a été mis en place pour interroger la viabilité cellulaire et la prolifération des 2 lignées humaines. Ces résultats sont en concordance avec ceux de la littérature. Pour la toxicologie, 3 différents modèles, y compris des microsomes (extrait de cellules d’insectes infectées par un baculovirus exprimant le cytochrome P450 3A4 humain, CYP3A4), HepG2-CYP3A4 (modifiée génétiquement pour exprimer le gène CYP3A4 humain), et HepaRG, une lignée hépatique, ont été évaluées pour l’activité enzymatique du CYP3A4, une enzyme largement utilisée en routine pour le criblage de médicament candidat. Les microsomes ont permis de développer un essai fluorogénique permettant de mesurer l’inhibition du CYP3A4. Cependant, ni l’utilisation des microsomes ni des cellules HepG2 exprimant CYP3A4 n’a donné de résultats satisfaisants en microgouttelettes. L’utilisation des cellules HepaRG, une lignée cellulaire qui conserve la majorité de l’expression des cytochromes P450 et des récepteurs nucléaires nécessaire à leur expression, a montré des résultats encourageant à la fois sur les tests de mesure de l’activité enzymatique et d’analyse de l’induction du CYP3A4. Pour la recherche sur le cancer, 4 essais originaux de PCR digitale en gouttes ont été mis en place pour la détection et la quantification de mutations (NRAS, DNMT3A, SF3B1 and JAK2) importante pour les syndromes myélodysplasiques, un groupe hétérogène de maladies touchant les cellules souches hématopoïétiques caractérisées par une hématopoïèse inefficace et des cytopénies périphériques. Finalement, un essai de PCR sur cellule unique encapsulées au sein de billes agarose a été proposé<br>This thesis project consists in developing droplet-based microfluidic tools for toxicology and cancer research. Owing to its large numbers of discretized volumes, sensitivity of detection of droplet-based microfluidics for biological molecules such as DNA and antibody is much higher than bulk assays. This high throughput format is particularly suitable for experiments where a robust dose-response curve is needed, as well as for single cell analysis with applications in genomic or sequencing and epigenetics. All above makes droplet-based microfluidics a powerful tool for toxicology and cancer research. In a first part of the work, an accurate cell counting method, named “microfluidics hemocytometry”, has been developed. A new counting algorithm was proposed to count the cells within each droplet. Escherichia Coli and two different human cell lines (HL60 and H1975) were used to validate our strategy. The number of each type of cells in droplets was determined with a high consistency between theory (Poisson distribution) and experimental results. With these robust results, a droplet-based microfluidic protocol has then been established to inquiry both cell viability and proliferation for the two human cell lines. The results are in good agreement with the one of the literature. For the toxicology, 3 different biological models, including microsomes (extracted from baculovirus-infected insect cell expressing human CYP3A4), HepG2-CYP3A4 (genetically modified to express the human CYP3A4 gene) and HepaRG liver cells lines were evaluated for enzymatic activity of cytochromes P450 (CYP3A4), a routinely used enzyme for drug candidate screening. Microsome-based assays were used to validate a fluorogenic inhibition assay. However neither microsome-based assay nor the assay using CYP3A4 expressing HepG2 gave satisfying results in droplet-based format. However, HepaRG cells, a hepatic function-conserved cell line with most cytochrome and related nuclear receptors, demonstrated high relevance both for enzymatic activity testing and CYP3A4 expression induction study. For cancer research, 4 different picoliter droplet-based PCR assays were developed for the detection and quantification of mutations (NRAS, DNMT3A, SF3B1 and JAK2) present in Myelodysplastic syndromes, a heterogeneous group of clonal bone marrow hematopoietic stem cell disorders characterized by ineffective hematopoiesis and peripheral cytopenias. Furthermore, a single cell multistep PCR assay using encapsulation of target DNA in agarose droplets was proposed
APA, Harvard, Vancouver, ISO, and other styles
14

Su, Steven. "Characterization of Primary Cilia and Intraflagellar Transport 20 in the Epidermis." Thesis, 2020. https://doi.org/10.7916/d8-syb1-vh19.

Full text
Abstract:
Mammalian skin is a dynamic organ that constantly undergoes self-renewal during homeostasis and regenerates in response to injury. Crucial for the skin’s self-renewal and regenerative capabilities is the epidermis and its stem cell populations. Here we have interrogated the role of primary cilia and Intraflagellar Transport 20 (Ift20) in epidermal development as well as during homeostasis and wound healing in postnatal, adult skin. Using a transgenic mouse model with fluorescent markers for primary cilia and basal bodies, we characterized epidermal primary cilia during embryonic development as well as in postnatal and adult skin and find that both the Interfollicular Epidermis (IFE) and hair follicles (HFs) are highly ciliated throughout development as well as in postnatal and adult skin. Leveraging this transgenic mouse, we also developed a technique for live imaging of epidermal primary cilia in ex vivo mouse embryos and discovered that epidermal primary cilia undergo ectocytosis, a ciliary mechanism previously only observed in vitro. We also generated a mouse model for targeted ablation of Ift20 in the hair follicle stem cells (HF-SCs) of adult mice. We find that loss of Ift20 in HF-SCs inhibits ciliogenesis, as expected, but strikingly it also inhibits hair regrowth. Closer examination of these mice reveals that Ift20 is crucial in maintaining HF-SC identity. Specifically, ablation of Ift20 in HF-SCs results in loss of SOX9 expression in HF-SCs and results in ectopic expression of the IFE marker KLF5 in HF-SCs. Additionally, ectopic differentiation is observed in HF-SCs following loss of Ift20. Finally, using both in vitro and in vivo models, we also characterize the role of primary cilia and Ift20 in epidermal wound healing. We find that loss of Ift20 slows collective keratinocyte migration in vitro and also slows HF-SC migration in vivo during wound repair. Interestingly our data suggests that Ift20 regulates keratinocyte migration in a primary cilia-independent manner. Instead, we find that Ift20 mediates focal adhesion (FA) turnover during keratinocyte migration. Specifically, Ift20 together with Rab5, regulates recycling of FA integrins and loss of Ift20 inhibits proper return of integrins to the keratinocyte surface. Overall, we demonstrate that the epidermis is highly ciliated throughout development and in postnatal skin. We show that Ift20 is crucial in maintaining HF-SC identity and the telogen to anagen transition in HFs. We finally demonstrate that Ift20 regulates keratinocyte migration independent of its function in ciliogenesis and instead regulates recycling of FA integrins through a Rab5 dependent mechanism.
APA, Harvard, Vancouver, ISO, and other styles
15

Zuccaro, Michael V. "Genome stability in the preimplantation embryo." Thesis, 2021. https://doi.org/10.7916/d8-kqyg-zm58.

Full text
Abstract:
The mammalian zygote and resulting embryo is the starting point of life, and thus must overcome continuous insult from DNA stress and damage while maintaining genome stability and integrity. This thesis examines genome stability in the context of chromosome changes, both in the context of ploidy and whole genome duplications as well as double-strand DNA breakage and chromosome loss. Regarding the ploidy portion of this work, while possible to derive and maintain, mammalian haploid stem cells undergo spontaneous, irreversible diploidization. Here, we investigated the mechanisms driving diploidization using human and mouse embryos, and human embryonic stem cells experimental systems. We demonstrate that diploidization occurs early in development and is often unproductive, with diploidized cells failing to contribute to the developing embryo. Diploidization involves delayed mitotic progression, incomplete alignment of chromosomes, and occurs through mitotic slippage or failed cytokinesis after exit from mitosis without formation of a midbody. Diploidization is associated with DNA damage and aneuploidies, with an upstream component being a decreased nuclear to cytoplasmic ratio. Increasing this ratio in haploid mouse embryos improves developmental outcomes and decreasing this ratio in diploids results in poor outcomes. A sensor of the nuclear to cytoplasmic ratio, CHK1, is required for haploid maintenance as inhibition increases binucleation and diploidization in haploid human embryonic stem cells. Thus, we demonstrate the earliest upstream driver of diploidization as being the nuclear-cytoplasmic ratio in haploid mammalian cells, rather than the actual haploid state. Regarding the double-strand DNA breakage portion of this work, the preferred mechanism by which human embryos repair double-strand breaks was investigated. Utilizing allele-specific CRISPR-Cas9 cleavage, we show that human embryos repair double-strand breaks primarily through non-homologous end joining. In embryos left unrepaired or misrepaired, partial or whole chromosome loss occurs, which can be easily overlooked and misinterpreted with common on-target analyses such as PCR. Off-target Cas-9 activity recapitulated findings on an entirely separate chromosome, confirming the preference of the human embryo for non-homologous end joining and microhomology-mediated end joining, as well as chromosome loss where repair was unsuccessful.
APA, Harvard, Vancouver, ISO, and other styles
16

Aina-Badejo, Danielle. "Elucidating the Unknown Role of Cyclin Dependent Kinase 5 in Cardiac Pathophysiological Conditions." Thesis, 2021. https://doi.org/10.7916/d8-j79v-jk33.

Full text
Abstract:
Until now, the role of cyclin dependent kinase 5 (CDK5) in cardiac pathophysiology has not been explored. While CDK5 has been well studied in the neuroscience/Alzheimer’s field as a cyclin-independent kinase, there is currently no investigation into the cardiac-specific role of CDK5. Recently, it was established that inhibition of CDK5 in stem cell derived cardiomyocytes from individuals with Timothy Syndrome (TS) rescued the delayed inactivation phenotype; TS is a fatal genetic long QT syndrome (LQTS) caused by delayed inactivation of the L-type voltage gated Ca2+channel CaV1.2. While it is evident that CDK5 plays an important role in regulating CaV1.2 function, its role in cardiac tissue remains to be elucidated. To determine whether CDK5 is essential for cardiac function, two separate mouse models were established—a cardiac-deficient Cdk5 mouse model (Cdk5 flox x αMHC-MerCreMer+) and a Cdk5 activation mouse model via overexpression of Cdk5’s known activator, p35 (Cdk5r1/p35 OE x αMHC-MerCreMer+). Immediately after spatiotemporal induction of deficiency/activation of Cdk5 in adult mice, echocardiography, histology and proteomic analysis were performed to examine effects on cardiac structure and function. Analysis of cardiac function and morphology in Cdk5 deficient mice revealed severe systolic dysfunction and a dilated cardiomyopathy-like phenotype. These results were further validated by a pathway analysis of quantified global proteome changes. Conversely, mice with an activation of Cdk5 displayed only minor changes in cardiac function with a modest reduction in fractional shortening and ejection fraction. Notably, these mice did not have any significant changes in cardiac chamber morphology, nor any significant changes to their global proteome. Interestingly, however, phosphoproteomic analysis revealed over 3,000 differentially phosphorylated proteins. Pathway and gene ontology analysis of proteome changes revealed significant hits related to cell adhesion. Evidence for the extensively studied role of CDK5 in the brain has demonstrated a critical role for CDK5 kinase activity in the regulation of cell adhesion. Alterations in cell adhesion are observed in a number of cardiac pathologies including heart failure and dilated cardiomyopathy; it is therefore plausible that CDK5 potentially regulates cardiac function via cell adhesion mechanisms. A comparison of the phospho-proteome acutely after Cdk5 depletion vs the phospho-proteome acutely after Cdk5 activation, allowed for the identification of a novel cardiac-specific Cdk5 substrate, beta taxilin (Txlnb). Validation of this potential phospho-substrate with an in situ proximity ligation assay demonstrated the co-localization of Cdk5-Txlnb in wildtype mouse cardiac tissue sections. When looking at co-localization in Cdk5 deficient tissue sections, no signals were observed. Lastly, our lab obtained donor cardiac tissue samples from individuals who passed away due to either heart failure or non-cardiac causes (serving as control cardiac tissue). Analysis of cardiac tissue samples revealed a significant increase in both CDK5 and p35 expression in heart failure samples. Dysregulation of phosphorylation has been implicated in cardiac dysfunction, with known contribution to contractile failure and a number of cardiac pathologies including cardiomyopathies. These findings further support a role for CDK5 in cardiac function. In conclusion, it appears that CDK5 is imperative for the maintenance of healthy cardiac function. Cardiac-specific homozygous and heterozygous Cdk5 deficiency revealed severe systolic dysfunction along with a dilated cardiomyopathy-like phenotype. While the effects of Cdk5 activation in the heart need to be further investigated, initial findings report significant downstream effects on the phosphorylation of a number of proteins, including Txlnb. Moreover, Txlnb was identified as a potential novel cardiac-specific substrate of Cdk5. The importance of identifying a role for CDK5 in the heart extends beyond this study. CDK inhibitors have been at the forefront of drug development for cancer therapeutics and immunotherapy. While modulation of CDK5 activity may be beneficial in one physiological system, it may prove deleterious in another. It is therefore imperative that the full range of molecular and physiological roles of each CDK be fully elucidated prior to therapeutic application. Furthermore, outcomes from this study have the potential to be translational for drug discovery and the development of new therapeutic avenues for heart disease.
APA, Harvard, Vancouver, ISO, and other styles
17

Saha, Ankita. "Potential role of histone deacetylases in the development of the chick and murine retina." Thesis, 2014. http://hdl.handle.net/1805/4980.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)<br>The epigenetic state of any cell is, in part, regulated by the interaction of DNA with nuclear histones. Histone tails can be modified in a number of ways that impact on the availability of DNA to interact with transcriptional complexes, including methylation, acetylation, phosphorylation, ubiquituination, and sumoylation. Histones are acetylated by a large family of enzymes, histone acetyl transferases (HATs), and deacetylated by the histone deacetylases (HDACs). Acetylated histones are generally considered markers of genomic regions that are actively being transcribed, whereas deacetylated and methylated histones are generally markers of regions that are inactive. The goal of the present study was to 1) study the epigenetic state with regard to the presence of euchromatin and heterochromatin in the developing chick and murine retina, 2) study and compare the localization patterns of the classical HDACs in the developing chick and murine retina with respect retinal progenitors and early differentiated cell types 3) to test the hypothesis that overall HDAC activity is required for dividing retinal progenitors to leave the cell cycle and differentiate. Our results showed that the classical HDACs were ubiquitously expressed in the developing chick and murine retinas. Species specific differences as well as stage dependent variations were observed in the localization of the HDACs in the cell types that were studied in the chick and murine retina. Our preliminary results also showed that HDAC inhibition may lead to the inability of the cell types to leave the cell cycle and a subsequent increase in the number of progenitor cells present in the developing chick retina.
APA, Harvard, Vancouver, ISO, and other styles
18

Koehler, Karl R. "Reconstitution of mouse inner ear sensory development from pluripotent stem cells." Thesis, 2014. http://hdl.handle.net/1805/6238.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)<br>The inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography