Academic literature on the topic 'Czochralski'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Czochralski.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Czochralski"
Tomaszewski, Paweł E. "Uwagi do komentarza Prof. Michała Kokowskiego o badaniach życiorysu Jana Czochralskiego." Studia Historiae Scientiarum 15 (November 24, 2016): 395–404. http://dx.doi.org/10.4467/23921749shs.16.018.6161.
Full textKokowski, Michał. "Odpowiedź na list Dr. Pawła E. Tomaszewskiego na temat badań życiorysu Jana Czochralskiego." Studia Historiae Scientiarum 15 (November 24, 2016): 405–8. http://dx.doi.org/10.4467/23921749shs.16.019.6162.
Full textYankovych, Oleksandra, and Vladyslav Verbets. "The Figure of Jan Czochralski as an Example of a Scientist, Teacher and Patriot for the Youth of Today to Imitate (1885 – 1953)." Professional Education: Methodology, Theory and Technologies, no. 18 (December 20, 2023): 274–89. http://dx.doi.org/10.31470/2415-3729-2023-18-274-289.
Full textTomaszewski, Paweł E. "Jan Czochralski—father of the Czochralski method." Journal of Crystal Growth 236, no. 1-3 (March 2002): 1–4. http://dx.doi.org/10.1016/s0022-0248(01)02195-9.
Full textBlizzard, John R. "Professor Jan Czochralski and the Czochralski award." physica status solidi (b) 248, no. 7 (May 10, 2011): 1559–62. http://dx.doi.org/10.1002/pssb.201140119.
Full textTomaszewski, Paweł E. "Od wazeliny do krzemowej rewolucji: czyli niezwykła historia największego polskiego odkrycia, które zmieniło świat." Studia Historiae Scientiarum 16 (December 18, 2017): 155–200. http://dx.doi.org/10.4467/2543702xshs.17.008.7709.
Full textSun, Chenguang, Zhongshi Lou, Xingtian Ai, Zixuan Xue, Hui Zhang, and Guifeng Chen. "Effects of Nitrogen Doping on Pulling Rate Range of Defect-Free Crystal in CZ Silicon." Coatings 13, no. 9 (September 18, 2023): 1637. http://dx.doi.org/10.3390/coatings13091637.
Full textGurdziel, Wojciech, Zygmunt Wokulski, Grzegorz Dercz, and Jacek Krawczyk. "Crystallization and Microstructure of Co0.75Ni0.25Si2 Solid Solution." Solid State Phenomena 186 (March 2012): 86–89. http://dx.doi.org/10.4028/www.scientific.net/ssp.186.86.
Full textBritten, J. F., H. A. Dabkowska, A. B. Dabkowski, J. E. Greedan, J. L. Campbell, and W. J. Teesdale. "Czochralski-Grown SrLaGaO4." Acta Crystallographica Section C Crystal Structure Communications 51, no. 10 (October 15, 1995): 1975–77. http://dx.doi.org/10.1107/s0108270194011820.
Full textDerby, J. J., and R. A. Brown. "Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth." Journal of Crystal Growth 75, no. 2 (May 1986): 227–40. http://dx.doi.org/10.1016/0022-0248(86)90032-1.
Full textDissertations / Theses on the topic "Czochralski"
Válek, Lukáš. "Microdefects in Czochralski Silicon." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234030.
Full textDerby, Jeffrey J. "Analysis of heat transfer, stability, and dynamics of Czochralski and liquid encapsulated Czochralski growth of semiconductor materials." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15048.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: leaves 360-367.
by Jeffrey J. Derby.
Ph.D.
Hicks, T. W. "Hydrodynamics of liquid encapsulation Czochralski crystal growth." Thesis, University of Bristol, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233905.
Full textPascoa, Soraia Sofia. "Oxygen and related defects in Czochralski silicon crowns." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27116.
Full textKozakevich, Daniel Norberto. "Simulação numerica do fluxo de czochralski não isotermico." [s.n.], 1988. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307528.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computção Científica
Made available in DSpace on 2018-07-16T04:08:25Z (GMT). No. of bitstreams: 1 Kozakevich_DanielNorberto_M.pdf: 1469044 bytes, checksum: 696736f842cfb0a6aec0d6210c9639fe (MD5) Previous issue date: 1988
Resumo: Na produção de cristais pela solidificação de sais fundidos, a técnica de CZOCHRALSKI é amplamente utilizada. Os cristais obtidos por esta técnica são indicados para a construção de dispositivos de baixa potência. Nesta técnica o sal é fundido num cadinho e mantido a uma temperatura superior a seu ponto de fusão. Uma semente do cristal é mergulhada no liquido e então puxada lentamente. O calor latente do sal que se solidifica na interfase semente-liquido, é eliminado por conducções através do cristal. Os três mecânismos básicos: convecção natural, rotação do cadinho e rotação do cristal e suas combinações foram simuladas numéricamente, para um fluxo de CZOCHRALSKI. Uma solução aproximada foi obtida mediante o metodo dos elementos finitos mistos, utilizando elementos quadrilaterais subparamétricos com aproximações / quadráticas nas componentes da velocidade e a temperatura e lineares na pressão. As integrais são calculadas numéricamente com uma regra gaussiana de nove pontos. As equações discretizadassao resolvidas pelo método de Newton e,os sistemas lineares pelo método frontal. O fluxo é não isotérmico, incompressivel, newtoniano, estacionário, tridimensional axisimétrico com fronteiras fixas. Outras formulações alternativas são colocadas para as equações de Navier-Stokes
Abstract: Not informed
Mestrado
Mestre em Matemática Aplicada
Brakel, Thomas W. "Mathematical modelling of the Czochralski crystal growth process." Doctoral thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/4868.
Full textIn this document a mathematical model for the Czochralski crystal growth process is developed. The trend in current research involves developing cumbersome numerical simulations that provide little or no understanding of the underlying physics. We attempt to review previous research methods, mainly devoted to silicon, and develop a novel analytical tool for indium antimonide (lnSb) crystal growth. This process can be subdivided into two categories: solidification and fluid mechanics. Thus far, crystal solidification of the Czochralski process has been described in the literature mainly qualitatively. There has been little work in calculating actual solidification dynamics. Czochralski crystal growth is a very sensitive process, particularly for lnSb, so it is crucial to describe the system as accurately as possible. A novel ID quasi-steady method is proposed for the shape and temperature field of an lnSb crystal, incorporating the effects of the melt. The fluid mechanics of the Czochralski melt have been modelled by numerous researchers,with calculations performed using commercial software. However, a descriptionof the buoyancy and rotation interaction in the melt has not been adequatelyperformed. Many authors have presented flow patterns but none have indicated either: melt conditions preferential for crystal growth or at least a description of a typical melt structure. In this work, a scale analysis is performed that implies an idealized flow structure. An asymptotic model is then derived based on this order of magnitude analysis, resulting in a fast and efficient fluid flow calculation. The asymptotic model is validated against a numerical solution to ensure that the macroscopic features of the flow structure are present. The asymptotic model does not show exact agreement, but does provide an estimate of the melt heat flux that is necessary for the solidification calculation. The asymptotic model is also used to predict macroscopic changes in the melt due to rotation.
Perret, Christian. "Simulation numérique des échanges thermiques et des contraintes thermoélastiques dans un tirage Czochralski." Grenoble 1, 1989. https://theses.hal.science/tel-00335809.
Full textHui, David C. W. "Characterization of semi-insulating liquid encapsulated Czochralski gallium arsenide." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/30648.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Martinez, André Luiz. "Síntese e crescimento de cristal da fase BiNbO4." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14012008-170719/.
Full textMany scientific works have been published reporting different procedures to the preparation and properties of ceramic bodies and thin films of bismuth niobate (BiNbO4 - BN). Characterized by high dielectric permittivity and excellent ferroelectric properties, this compound has attracted the interest of the scientific community. However, a restricted and conflict literature is found about this compound in the single crystal form. The appearance of structure phase transitions was demonstrated in the most difficulty for the preparation of this compounds as single crystals. The potential applications as electronic device material, due its ferroelectrics properties, as well as the challenge to preparation materials which indicate structural transition were used as motivations to the development of this work. The main purposes of this work were to make synthesis and the crystal growth of BiNbO4. For this propose, techniques as Czochralski (CZ), Laser Heated Pedestal Growth (LHPG) and self-flux were used. The difficulties found when used each one of the techniques and their variations are discussed. The structural phase transition (\'alfa\'-BiNbO4 - \'beta\'-BiNbO4) was the principal barrier in the preparation of this material with optical quality. The behavior of dielectric permittivity (\'épsilon\' ) and lost factor (tg\' teta\') by the temperature and frequency were determined through studies of Impedance Spectroscopy
Kinney, Thomas Arthur. "Quantitative modelling for optimization of the Czochralski growth of silicon." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13204.
Full textBooks on the topic "Czochralski"
Tomaszewski, Paweł. Jan Czochralski i jego metoda =: Jan Czochralski and his method. Wrocław: Instytut Niskich Temperatur i Badań Strukturalnych PAN, 2003.
Find full textOrgan, A. E. Numerical solution of Czochralski crystal growth. Norwich: University of East Anglia, 1986.
Find full textPooni, J. S. Characterisation of deep levels in undopedsemi-insulatingliquidencapsulated czochralski galliumarsenide. Manchester: UMIST, 1994.
Find full textThierry, Duffar, ed. Crystal growth processes based on capillarity: Czochralski, floating zone, shaping and crucible techniques. Hoboken, N.J: Wiley, 2010.
Find full textDuffar, Thierry. Crystal growth processes based on capillarity: Czochralski, floating zone, shaping and crucible techniques. Hoboken, N.J: Wiley, 2010.
Find full textW, Shields A., Frazier Donald O, and George C. Marshall Space Flight Center., eds. A preliminary review of organic materials single crystal growth by the Czochralski technique. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1988.
Find full textTomaszewski, Paweł. Powrót: Rzecz o Janie Czochralskim. Wrocław: Oficyna Wydawnicza ATUT, 2012.
Find full textPietila, Douglas A. Evaluation of gold gettering by intrinsic oxide precipitation in Czochralski silicon. 1986.
Find full textDuffar, Thierry. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques. Wiley & Sons, Incorporated, John, 2010.
Find full textDuffar, Thierry. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques. Wiley & Sons, Limited, John, 2010.
Find full textBook chapters on the topic "Czochralski"
Galazka, Zbigniew. "Czochralski Method." In Gallium Oxide, 15–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_2.
Full textTatarchenko, Y. A. "The Czochralski Technique." In Fluid Mechanics and Its Applications, 45–69. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2988-8_3.
Full textZulehner, W. "Czochralski Growth of Silicon." In Semiconductor Silicon, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74723-6_1.
Full textZeng, Zhong, Yongxiang Zhang, and Jingqiu Chen. "Model for Czochralski Crystal Growth." In Computational Mechanics, 236. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75999-7_36.
Full textVoigt, Axel, and Karl-Heinz Hoffmann. "Control of Czochralski Crystal Growth." In Optimal Control of Complex Structures, 259–65. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8148-7_21.
Full textLukanin, Denis, Vladimir Kalaev, and Alexander Zhmakin. "Parallel Simulation of Czochralski Crystal Growth." In Parallel Processing and Applied Mathematics, 469–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24669-5_61.
Full textUelhoff, Werner. "The physics of Czochralski crystal growth." In Festkörperprobleme 27, 241–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0107924.
Full textMyal’dun, A. Z., A. I. Prostomolotov, N. K. Tolochko, N. A. Verezub, and E. V. Zharikov. "Vibrational Control of Czochralski Crystal Growth." In Growth of Crystals, 181–96. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0537-2_15.
Full textWinkler, Jan, Michael Neubert, Joachim Rudolph, Ning Duanmu, and Michael Gevelber. "Czochralski Process Dynamics and Control Design." In Crystal Growth Processes Based on Capillarity, 115–202. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781444320237.ch3.
Full textDiéguez, Ernesto, Jose Luis Plaza, Mohan D. Aggarwal, and Ashok K. Batra. "Czochralski Growth of Oxide Photorefractive Crystals." In Springer Handbook of Crystal Growth, 245–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74761-1_9.
Full textConference papers on the topic "Czochralski"
Nakano, Akifumi, Hide S. Koyama, and Hyung Jin Sung. "Experiments on Czochralski Convection Model." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1249.
Full textUecker, Reinhard, Detlef Klimm, Steffen Ganschow, Peter Reiche, Rainer Bertram, Mathias Roßberg, and Roberto Fornari. "Czochralski growth of Ti:sapphire laser crystals." In European Symposium on Optics and Photonics for Defence and Security, edited by John C. Carrano, Arturas Zukauskas, Anthony W. Vere, James G. Grote, and François Kajzar. SPIE, 2005. http://dx.doi.org/10.1117/12.634322.
Full textPeters, Jason E., P. Darrell Ownby, Charles R. Poznich, Jroy C. Richter, and Dennis W. Thomas. "Infrared absorption of Czochralski germanium and silicon." In International Symposium on Optical Science and Technology, edited by Alexander J. Marker III and Mark J. Davis. SPIE, 2001. http://dx.doi.org/10.1117/12.446889.
Full textRahal, Samir, and Hisao Azuma. "Flow Instabilities in a Czochralski Convective System." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58120.
Full textOgino, Fumimaru, T. Inarnuro, and A. Kodo. "DYNAMIC MODELLING OF CZOCHRALSKI CRYSTAL GROWTH PROCESS." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1020.
Full textHara, Akito, Masaaki Koizuka, Masaki Aoki, and Tetsuo Fukuda. "Hydrogen in As-Grown Czochralski Silicon Crystals." In 1993 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1993. http://dx.doi.org/10.7567/ssdm.1993.c-7-1.
Full textLiu, Lijun, and Koichi Kakimoto. "Numerical Study of the Effect of Magnetic Fields on Melt-Crystal Interface-Deflection in Czochralski Crystal Growth." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47534.
Full textBanerjee, Jyotirmay, and K. Muralidhar. "Simulation of Transport Phenomena and Interfacial Dynamics During Czochralski Growth of Oxide Crystals." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62116.
Full textCamargo, F., J. A. C. Goncalves, H. J. Khoury, E. Tuominen, J. Harkonen, and C. C. Bueno. "Gamma-radiation dosimetry with magnetic Czochralski silicon diode." In 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007. http://dx.doi.org/10.1109/nssmic.2007.4436428.
Full textYang, Deren, Jinggang Lu, Yijun Shen, Daxi Tian, Xiangyang Ma, Liben Li, and Duanlin Que. "Investigation of as-grown nitrogen-doped Czochralski silicon." In International Conference on Solid State Crystals 2000, edited by Antoni Rogalski, Krzysztof Adamiec, and Pawel Madejczyk. SPIE, 2001. http://dx.doi.org/10.1117/12.435811.
Full textReports on the topic "Czochralski"
Tsaur, S. C. Czochralski growth of gallium indium antimonide alloy crystals. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/329561.
Full textJester, T. Photovoltaic Czochralski Silicon Manufacturing Technology Improvements: Annual Subcontract Report, 1 April 1993 - 31 March 1994. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/41327.
Full textYau, Waifan. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/5398032.
Full textBrown, R. A. Thermal-capillary model with axisymmetric fluid flow for analysis of Czochralski crystal growth of high Prandtl number materials: Final report. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/6237678.
Full textGoodrich, Alan, and Michael Woodhouse. A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1336550.
Full text