To see the other types of publications on this topic, follow the link: Czochralski silicon.

Journal articles on the topic 'Czochralski silicon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Czochralski silicon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yang, De Ren, and Jiahe Chen. "Germanium in Czochralski Silicon." Defect and Diffusion Forum 242-244 (September 2005): 169–84. http://dx.doi.org/10.4028/www.scientific.net/ddf.242-244.169.

Full text
Abstract:
The behaviors of isovalent impurities doped in Czochralski (CZ) silicon crystal have attracted considerable attention in recent years. In this article, a review concerning recent processes in the study about germanium in CZ silicon is presented. The disturbance of silicon crystal lattice in and the influence on the mechanical strength due to germanium doping is described. Oxygen related donors, oxygen precipitation and voids defects in germanium doped Czochralski (GCZ) silicon has been demonstrated in detail. In addition, the denuded zone formation and the internal gettering technology of GCZ silicon is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Bates, Alison G. "Czochralski silicon radiation detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 569, no. 1 (December 2006): 73–76. http://dx.doi.org/10.1016/j.nima.2006.09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jia He, Xiang Yang Ma, and De Ren Yang. "Impurity Engineering of Czochralski Silicon." Solid State Phenomena 156-158 (October 2009): 261–67. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.261.

Full text
Abstract:
The novel concept of “impurity engineering in CZochralski (CZ) silicon ” for large scaled integrated circuits has been reviewed. By doping with a certain impurities into CZ silicon materials intentionally, such as nitrogen (N), germanium (Ge) and even carbon (C, with high concentration), internal gettering ability of CZ silicon wafers could be improved. Meanwhile, void defects in CZ silicon wafer could be easily eliminated during annealing at higher temperatures. Furthermore, it was also found that the mechanical strength could be increased, so that breakage of wafers decreased. Thus, it is believed that by impurity engineering CZ silicon wafers can satisfy the requirment of ultra large scale integrated circuits.
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Xuegong, Jiahe Chen, Xiangyang Ma, and Deren Yang. "Impurity engineering of Czochralski silicon." Materials Science and Engineering: R: Reports 74, no. 1-2 (January 2013): 1–33. http://dx.doi.org/10.1016/j.mser.2013.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aubert, J. J., and J. J. Bacmann. "Czochralski growth of silicon bicrystals." Revue de Physique Appliquée 22, no. 7 (1987): 515–18. http://dx.doi.org/10.1051/rphysap:01987002207051500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitchell, K. W. "Renaissance of Czochralski silicon photovoltaics." Progress in Photovoltaics: Research and Applications 2, no. 2 (April 1994): 115–20. http://dx.doi.org/10.1002/pip.4670020206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Jingwei, Juncheng Li, Yinhe Lin, Jian Shi, Boyuan Ban, Guicheng Liu, Woochul Yang, and Jian Chen. "Separation and Recovery of Refined Si from Al–Si Melt by Modified Czochralski Method." Materials 13, no. 4 (February 23, 2020): 996. http://dx.doi.org/10.3390/ma13040996.

Full text
Abstract:
Separation of refined silicon from Al–Si melt is still a puzzle for the solvent refining process, resulting in considerable waste of acid and silicon powder. A novel modified Czochralski method within the Al–Si alloy is proposed. After the modified Czochralski process, a large amount of refined Si particles was enriched around the seed crystalline Si and separated from the Al–Si melt. As for the Al–28%Si with the pulling rate of 0.001 mm/min, the recovery of refined Si in the pulled-up alloy (PUA) sample is 21.5%, an improvement of 22% compared with the theoretical value, which is much larger 1.99 times than that in the remained alloy (RA) sample. The content of impurities in the PUA is much less than that in the RA sample, which indicates that the modified Czochralski method is effective to improve the removal fraction of impurities. The apparent segregation coefficients of boron (B) and phosphorus (P) in the PUA and RA samples were evaluated. These results demonstrate that the modified Czochralski method for the alloy system is an effective way to enrich and separate refined silicon from the Al–Si melt, which provide a potential and clean production of solar grade silicon (SoG-Si) for the future industrial application.
APA, Harvard, Vancouver, ISO, and other styles
8

Itsumi, Manabu. "Octahedral void defects in Czochralski silicon." Journal of Crystal Growth 237-239 (April 2002): 1773–78. http://dx.doi.org/10.1016/s0022-0248(01)02337-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Härkönen, J., E. Tuovinen, P. Luukka, H. K. Nordlund, and E. Tuominen. "Magnetic Czochralski silicon as detector material." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, no. 2 (September 2007): 648–52. http://dx.doi.org/10.1016/j.nima.2007.05.264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Messineo, Alberto. "Czochralski silicon sensors: Status of development." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 582, no. 3 (December 2007): 829–34. http://dx.doi.org/10.1016/j.nima.2007.07.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Barraclough, K. G. "Oxygen in Czochralski silicon for ULSI." Journal of Crystal Growth 99, no. 1-4 (January 1990): 654–64. http://dx.doi.org/10.1016/s0022-0248(08)80002-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chan, Y. T., H. J. Gibeling, and H. L. Grubin. "Numerical simulations of Czochralski silicon growth." Journal of Applied Physics 64, no. 3 (August 1988): 1425–39. http://dx.doi.org/10.1063/1.341815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lin, Wen, and A. S. Oates. "Anomalous oxygen precipitation in Czochralski silicon." Applied Physics Letters 56, no. 2 (January 8, 1990): 128–30. http://dx.doi.org/10.1063/1.103050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Guifeng, Yangxian Li, and Caichi Liu. "Neutron irradiation defects in Czochralski silicon." physica status solidi (c) 6, no. 3 (March 2009): 669–76. http://dx.doi.org/10.1002/pssc.200880706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Selim, F. A. "Magnetic Czochralski Silicon for Power Devices." ECS Proceedings Volumes 1987-13, no. 1 (January 1987): 343–52. http://dx.doi.org/10.1149/198713.0343pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wijaranakula, W. "Dissolution kinetics ofDdefects in Czochralski silicon." Journal of Applied Physics 75, no. 7 (April 1994): 3678–80. http://dx.doi.org/10.1063/1.356084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bukowski, A. "Czochralski-Grown Silicon Crystals for Microelectronics." Acta Physica Polonica A 124, no. 2 (August 2013): 235–38. http://dx.doi.org/10.12693/aphyspola.124.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sinno, Talid, and Robert A. Brown. "Modeling Microdefect Formation in Czochralski Silicon." Journal of The Electrochemical Society 146, no. 6 (June 1, 1999): 2300–2312. http://dx.doi.org/10.1149/1.1391931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Sang Hun, Jeong Won Kang, Young Ho Hong, Hyun Jung Oh, and Do Hyun Kim. "Vacancy behavior in Czochralski silicon growth." Journal of Crystal Growth 311, no. 14 (July 2009): 3592–97. http://dx.doi.org/10.1016/j.jcrysgro.2009.04.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wagner, P., R. Oeder, and W. Zulehner. "Nitrogen-oxygen complexes in Czochralski-silicon." Applied Physics A Solids and Surfaces 46, no. 2 (June 1988): 73–76. http://dx.doi.org/10.1007/bf00615911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Deren. "Defects in germanium-doped Czochralski silicon." physica status solidi (a) 202, no. 5 (April 2005): 931–38. http://dx.doi.org/10.1002/pssa.200460520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tomaszewski, Paweł E. "Od wazeliny do krzemowej rewolucji: czyli niezwykła historia największego polskiego odkrycia, które zmieniło świat." Studia Historiae Scientiarum 16 (December 18, 2017): 155–200. http://dx.doi.org/10.4467/2543702xshs.17.008.7709.

Full text
Abstract:
In August 2016 exactly one hundred years passed from the discovery of the Czochralski method of single crystal pulling, named after Jan Czochralski (1885–1953), the Polish chemist and metallurgist. To celebrate this anniversary, a translation of Czochralski main publication into Polish was published. In the present paper we show the pharmaceutical inspiration which was most likely a source of the discovery of the Czochralski method. We present the evolution of this method up to obtaining huge single crystals of silicon, the fundamental element of contemporary electronics and our civilization.
APA, Harvard, Vancouver, ISO, and other styles
23

Franc, Jan. "Modelling of the Czochralski flow." Abstract and Applied Analysis 3, no. 1-2 (1998): 1–40. http://dx.doi.org/10.1155/s1085337598000426.

Full text
Abstract:
The Czochralski method of the industrial production of a silicon single crystal consists of pulling up the single crystal from the silicon melt. The flow of the melt during the production is called the Czochralski flow. The mathematical description of the flow consists of a coupled system of six P.D.E. in cylindrical coordinates containing Navier-Stokes equations (with the stream function), heat convection-conduction equations, convection-diffusion equation for oxygen impurity and an equation describing magnetic field effect.This paper deals with the analysis of the system in the form used for numerical simulation. The weak formulation is derived and the existence of the weak solution to the stationary and the evolution problem is proved.
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Zhensheng, and Torbjörn Carlberg. "Reactions between liquid silicon and vitreous silica." Journal of Materials Research 7, no. 2 (February 1992): 352–58. http://dx.doi.org/10.1557/jmr.1992.0352.

Full text
Abstract:
Oxygen incorporation in silicon crystals during Czochralski growth is dependent on many factors, of which the dissolution of the silica crucible is of great importance. In this paper the reactions between vitreous silica and molten silicon have been analyzed, both in sealed ampoules and in Czochralski crucibles. It was found that the vitreous silica crystallizes to cristobalite by lateral growth. For this reaction to occur it is necessary that liquid silicon is present. The vitreous silica dissolves and the cristobalite grows with a thin layer of liquid silicon between them. Different oxygen concentrations in the melt in equilibrium with the amorphous and crystallized silica are necessary for the reaction to proceed. The oxygen flux in the melt is dependent upon the dissolution of both vitreous silica and cristobalite as well as the reaction between these phases.
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Zhen Hui, Xiang Yang Ma, and De Ren Yang. "Microdefects in Heavily Phosphorus-Doped Czochralski Silicon." Solid State Phenomena 178-179 (August 2011): 201–4. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.201.

Full text
Abstract:
Oxygen precipitation (OP) and annihilation of voids in heavily phosphorus (P)-doped Czochralski (Cz) silicon have been investigated. It was found that the nucleation anneal at 650°C resulted in much more pronounced OP in the subsequent high temperature anneal than that at 800 or 900 °C. This was due to that SiP precipitates could be formed in heavily P-doped Cz silicon by the 650oC anneal and they acted as the heterogeneous nuclei for OP in the following anneal at high temperatures. The rapid thermal anneal (RTA) at 1200°C was proved to be an effective means to annihilate voids. Moreover, it was found that the significant OP resulting from the two-step anneal of 650°C/8 h + 1000°C/16 h could also cause the substantial annihilation of voids in heavily P-doped Cz silicon. The mechanisms for the annihilation of voids have been tentatively discussed.
APA, Harvard, Vancouver, ISO, and other styles
26

Jensen, Mathias Novik, and Olav Gaute Hellesø. "Measuring the end-face of silicon boules using mid-infrared laser scanning." CrystEngComm 23, no. 26 (2021): 4648–57. http://dx.doi.org/10.1039/d1ce00264c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Geddo, M., B. Pivac, A. Borghesi, A. Stella, and M. Pedrotti. "Interstitial oxygen determination near epitaxial silicon and Czochralski silicon interface." Applied Physics Letters 58, no. 4 (January 28, 1991): 370–72. http://dx.doi.org/10.1063/1.104637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yang, Deren, Xiangyang Ma, Ruixin Fan, Jinxin Zhang, Liben Li, and Duanlin Que. "Oxygen precipitation in nitrogen-doped Czochralski silicon." Physica B: Condensed Matter 273-274 (December 1999): 308–11. http://dx.doi.org/10.1016/s0921-4526(99)00453-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pellegrini, G., J. M. Rafí, M. Ullán, M. Lozano, C. Fleta, and F. Campabadal. "Characterization of magnetic Czochralski silicon radiation detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 548, no. 3 (August 2005): 355–63. http://dx.doi.org/10.1016/j.nima.2005.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hoshikawa, Keigo, and Xinming Huang. "Oxygen transportation during Czochralski silicon crystal growth." Materials Science and Engineering: B 72, no. 2-3 (March 2000): 73–79. http://dx.doi.org/10.1016/s0921-5107(99)00494-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Mingwei, Yourong Li, Nobuyuki Imaishi, and Takao Tsukada. "Global simulation of a silicon Czochralski furnace." Journal of Crystal Growth 234, no. 1 (January 2002): 32–46. http://dx.doi.org/10.1016/s0022-0248(01)01634-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Xi, Zhenqiang, Deren Yang, Jun Chen, Duanlin Que, and H. J. Moeller. "Nickel precipitation in large-diameter Czochralski silicon." Physica B: Condensed Matter 344, no. 1-4 (February 2004): 407–12. http://dx.doi.org/10.1016/j.physb.2003.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sinno, T., E. Dornberger, W. von Ammon, R. A. Brown, and F. Dupret. "Defect engineering of Czochralski single-crystal silicon." Materials Science and Engineering: R: Reports 28, no. 5-6 (July 2000): 149–98. http://dx.doi.org/10.1016/s0927-796x(00)00015-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, C., H. Zhang, T. H. Wang, and T. F. Ciszek. "A continuous Czochralski silicon crystal growth system." Journal of Crystal Growth 250, no. 1-2 (March 2003): 209–14. http://dx.doi.org/10.1016/s0022-0248(02)02241-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ma, Y., R. Job, Y. L. Huang, W. R. Fahrner, M. F. Beaufort, and J. F. Barbot. "Three-Layer Structure of Hydrogenated Czochralski Silicon." Journal of The Electrochemical Society 151, no. 9 (2004): G627. http://dx.doi.org/10.1149/1.1781613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

XU, Yuesheng. "Growth of Czochralski silicon under magnetic field." Science in China Series E 47, no. 3 (2004): 281. http://dx.doi.org/10.1360/03ye0325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xu, Yuesheng, Yangxian Li, Caichi Liu, and Hongmei Wang. "Fast neutron irradiation for Czochralski grown silicon." Applied Physics Letters 65, no. 22 (November 28, 1994): 2807–8. http://dx.doi.org/10.1063/1.112572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gao, M., X. F. Duan, L. M. Peng, and J. Li. "Void-like defects in annealed Czochralski silicon." Applied Physics Letters 73, no. 16 (October 19, 1998): 2311–12. http://dx.doi.org/10.1063/1.121807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Peng, Xuegong Yu, Peng Chen, Xiaoqiang Li, Deren Yang, Xue Chen, and Zhenfei Huang. "Germanium-doped Czochralski silicon for photovoltaic applications." Solar Energy Materials and Solar Cells 95, no. 8 (August 2011): 2466–70. http://dx.doi.org/10.1016/j.solmat.2011.04.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Weiyan, Deren Yang, Xiangyang Ma, Yuheng Zeng, and Duanlin Que. "Copper Precipitation in Germanium-Doped Czochralski Silicon." ECS Transactions 16, no. 6 (December 18, 2019): 219–25. http://dx.doi.org/10.1149/1.2980305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Voronkov, V. V., and R. Falster. "Vacancy-type microdefect formation in Czochralski silicon." Journal of Crystal Growth 194, no. 1 (November 1998): 76–88. http://dx.doi.org/10.1016/s0022-0248(98)00550-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Weiyan, Deren Yang, Xiangyang Ma, and Duanlin Que. "Copper precipitation in nitrogen-doped Czochralski silicon." Journal of Applied Physics 104, no. 1 (July 2008): 013508. http://dx.doi.org/10.1063/1.2949402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nishino, Y., T. Nishikawa, and S. Asano. "Strain Aging in Czochralski-Grown Silicon Crystals." physica status solidi (a) 122, no. 1 (November 16, 1990): 163–69. http://dx.doi.org/10.1002/pssa.2211220115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hara, Akito, Iesada Hirai, and Akira Ohsawa. "NL10 defects formed in Czochralski silicon crystals." Journal of Applied Physics 67, no. 5 (March 1990): 2462–65. http://dx.doi.org/10.1063/1.345495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Itsumi, Manabu, Osaake Nakajima, and Noboru Shiono. "Oxide defects originating from Czochralski silicon substrates." Journal of Applied Physics 72, no. 6 (September 15, 1992): 2185–91. http://dx.doi.org/10.1063/1.351609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wei, Ya-dong, and Jun-wu Liang. "Dislocation Movement in Nitrogen-Doped Czochralski Silicon." Chinese Physics Letters 13, no. 5 (May 1996): 382–85. http://dx.doi.org/10.1088/0256-307x/13/5/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Simoen, E., K. Saga, J. Lauwaert, and H. Vrielinck. "Deep Levels in W-Doped Czochralski Silicon." ECS Transactions 64, no. 11 (August 7, 2014): 219–28. http://dx.doi.org/10.1149/06411.0219ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Simoen, E., K. Saga, H. Vrielinck, and J. Lauwaert. "Deep Levels in W-Doped Czochralski Silicon." ECS Journal of Solid State Science and Technology 5, no. 4 (October 5, 2015): P3001—P3007. http://dx.doi.org/10.1149/2.0011604jss.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chiou, Herng-Der. "Phosphorus Concentration Limitation in Czochralski Silicon Crystals." Journal of The Electrochemical Society 147, no. 1 (2000): 345. http://dx.doi.org/10.1149/1.1393198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xi, Zhenqiang, Jun Chen, Deren Yang, A. Lawerenz, and H. J. Moeller. "Copper precipitation in large-diameter Czochralski silicon." Journal of Applied Physics 97, no. 9 (May 2005): 094909. http://dx.doi.org/10.1063/1.1875740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography