To see the other types of publications on this topic, follow the link: D2D proximity services.

Journal articles on the topic 'D2D proximity services'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 journal articles for your research on the topic 'D2D proximity services.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Donghyeon, and In-Ho Lee. "Deep Learning-Based Power Control Scheme for Perfect Fairness in Device-to-Device Communication Systems." Electronics 9, no. 10 (October 1, 2020): 1606. http://dx.doi.org/10.3390/electronics9101606.

Full text
Abstract:
The proximity-based device-to-device (D2D) communication allows for internet of things, public safety, and data offloading services. Because of these advantages, D2D communication has been applied to wireless communication networks. In wireless networks using D2D communication, there are challenging problems of the data rate shortage and coverage limitation due to co-channel interference in the proximity communication. To resolve the problems, transmit power control schemes that are based on deep learning have been presented in network-assisted D2D communication systems. The power control schemes have focused on enhancing spectral efficiency and energy efficiency in the presence of interference. However, the data-rate fairness performance may be a key performance metric in D2D communications, because devices in proximity can expect fair quality of service in the system. Hence, in this paper, a transmit power control scheme using a deep-learning algorithm based on convolutional neural network (CNN) is proposed to consider the data-rate fairness performance in network-assisted D2D communication systems, where the wireless channels are modelled by path loss and Nakagami fading. In the proposed scheme, the batch normalization (BN) scheme is introduced in order to further enhance the spectral efficiency of the conventional deep-learning transmit power control scheme. In addition, a loss function for the deep-learning optimization is defined in order to consider both the data-rate fairness and spectral efficiency. Through simulation, we show that the proposed scheme can achieve extremely high fairness performance while improving the spectral efficiency of the conventional schemes. It is also shown that the improvement in the fairness and spectral efficiency is achieved for different Nakagami fading conditions and sizes of area containing the devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Adnan, Mohd Hirzi, and Zuriati Ahmad Zukarnain. "Device-To-Device Communication in 5G Environment: Issues, Solutions, and Challenges." Symmetry 12, no. 11 (October 24, 2020): 1762. http://dx.doi.org/10.3390/sym12111762.

Full text
Abstract:
Device-to-device (D2D) communication produces a new dimension in the mobile environment, easing the data exchange process between physically neighboring devices. To achieve an effective utilization of available resources, reduce latency, improve data rates, and increase system capacity, D2D communication utilizes nearby communicating devices. The mobile operator’s action to collect the short-range communications for maintenance of the proximity-based services and improve the performance of networks drives the development of D2D. This paper presents an extensive review of proposed solutions aiming to enhance the security in D2D communication. The main goal of the research is to present an extensive review of the recent advances in various D2D domains such as the discovery process, mode selection schemes, interference management, power control techniques and finally the mode selection for D2D applications for 5G technologies. Additionally, we highlight the open problems and identify the challenges with regard to the D2D communication problem.
APA, Harvard, Vancouver, ISO, and other styles
3

Sim, Gek Hong, Adrian Loch, Arash Asadi, Vincenzo Mancuso, and Joerg Widmer. "5G Millimeter-Wave and D2D Symbiosis: 60 GHz for Proximity-Based Services." IEEE Wireless Communications 24, no. 4 (August 2017): 140–45. http://dx.doi.org/10.1109/mwc.2017.1600098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lai, Wei Kuang, Chin-Shiuh Shieh, Fu-Sheng Chou, Chia-Yu Hsu, and Meng-Han Shen. "Handover Management for D2D Communication in 5G Networks." Applied Sciences 10, no. 12 (June 26, 2020): 4409. http://dx.doi.org/10.3390/app10124409.

Full text
Abstract:
This study addresses the handover management issue for Device-to-Device communication in fifth-generation (5G) networks. The Third Generation Partnership Project (3GPP) drafted a standard for proximity services (ProSe), also named device-to-device (D2D) communication, which is a promising technology in offering higher throughput and lower latency services to end users. Handover is an essential issue in wireless mobile networks due to the mobility of user equipment (UE). Specifically, we need to transfer an ongoing connection from an old E-UTRAN Node B (eNB) to a new one, so that the UE can retain its connectivity. In the data plane, both parties of a D2D pair can communicate directly with each other without the involvement of the base station. However, in the control plane, devices must be connected to the eNB for tasks such as power control and resource allocation. In the current standard of handover scheme, the number of unnecessary handovers would be increased by the effect of shadowing fading on two devices. More important, the handover mechanism for D2D pairs is not standardized yet. LTE-A only considers the handover procedure of a single user. Therefore, when a D2D pair moves across cell boundaries, the control channels of the two UEs may connect to different base stations and result in increased latency due to the exchange of D2D related control messages. Hence, we propose a handover management scheme for D2D communication to let both parties of a D2D pair handover to the same destination eNB at the same time. By doing so, the number of unnecessary handovers, as well as the handover latency, can be reduced. In the proposed method, we predict the destination eNB of D2D users based on their movements and the received signal characteristics. Subsequently, we make a handover decision for each D2D pair by jointly factoring in the signal quality and connection stability. Expected improvement can be attained, as revealed in the simulation. Unnecessary handover can be avoided. Consequently, both UEs of a D2D pair reside in the same cell and, therefore, result in increased throughput and decreased delay.
APA, Harvard, Vancouver, ISO, and other styles
5

Ombongi, Filbert Onkundi, Heywood Ouma Absaloms, and Philip Langat Kibet. "Resource Allocation in Millimeter-Wave Device-to-Device Networks." Mobile Information Systems 2019 (December 26, 2019): 1–16. http://dx.doi.org/10.1155/2019/5051360.

Full text
Abstract:
Recently, the mobile wireless communication has seen explosive growth in data traffic which might not be supported by the current Fourth Generation (4G) networks. The Fifth Generation (5G) networks will overcome this challenge by exploiting a higher spectrum available in millimeter-wave (mmwave) band to improve network throughput. The integration of the millimeter-wave communication with device-to-device communication can be an enabling 5G scheme in providing bandwidth-intensive proximity-based services such as video sharing, live streaming of data, and socially aware networking. Furthermore, the current cellular network traffic can also be offloaded by the D2D user devices thereby reducing loading at Base Stations (BSs), which would then increase the system capacity. However, the mmwave D2D communication is associated with numerous challenges, which include signal blockages, user mobility, high-computational complexity resource allocation algorithms, and increase in interuser interference for dense D2D user scenario. The paper presents review of existing channel and power allocation approaches and mathematical resource optimization solution techniques. In addition, the paper discusses the challenges hindering the realization of an effective allocation scheme in mmwave D2D communication and gives open research issues for further study.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Weiguang, Hui Li, Wenjie Zhang, and Shanlin Wei. "Energy Efficiency for Data Offloading in D2D Cooperative Caching Networks." Wireless Communications and Mobile Computing 2020 (June 27, 2020): 1–11. http://dx.doi.org/10.1155/2020/2730478.

Full text
Abstract:
D2D communication improves the cellular network performance by using proximity-based services between adjacent devices, which considered is an effective way to solve the problem of spectrum scarcity caused by tremendous mobile data traffic. If the cache-enabled users are willing to send the cached file to the requesters, the content delivery traffic can be offloaded through the D2D link. In this paper, we strive to find the maximum energy efficiency of the D2D caching network through the joint optimization of cache policy and content transmit power. Specifically, based on stochastic geometry-aided modeling of the network, we derive the data offloading rate in closed form, which jointly considers the effects of success sensing probability and success transmission probability. According to the data offloading rate, we formulate a joint optimization problem integrating cache policy and transmit power to maximize the system energy efficiency. To solve this problem, we propose two optimization algorithms that the cache policy optimization algorithm based on gradient update and the joint optimization algorithm. The simulation results demonstrate that the joint optimization has twice the superiority in improving the energy efficiency of the D2D caching network compared with other schemes.
APA, Harvard, Vancouver, ISO, and other styles
7

Prasad, Athul, Andreas Kunz, Genadi Velev, Konstantinos Samdanis, and JaeSeung Song. "Energy-Efficient D2D Discovery for Proximity Services in 3GPP LTE-Advanced Networks: ProSe Discovery Mechanisms." IEEE Vehicular Technology Magazine 9, no. 4 (December 2014): 40–50. http://dx.doi.org/10.1109/mvt.2014.2360652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garey, Wesley D., Yishen Sun, and Richard A. Rouil. "Performance Evaluation of Proximity Services and Wi-Fi for Public Safety Mission Critical Voice Application." Wireless Communications and Mobile Computing 2020 (May 21, 2020): 1–12. http://dx.doi.org/10.1155/2020/8198767.

Full text
Abstract:
Proximity Services (ProSe) and Wi-Fi are two promising technologies that may provide support for Mission Critical Voice (MCV) applications in remote and rural areas by enabling Device-to-Device (D2D) communication. In this paper, several performance metrics of ProSe and Wi-Fi are evaluated and compared side-by-side under various configurations. The ns-3 simulation results show that ProSe outperforms Wi-Fi in terms of coverage range and access time with a medium traffic load, while Wi-Fi has a shorter access time under a light traffic load. In addition, with various user densities, ProSe offers better coverage range and access time a majority of the time. The evaluation in this paper provides insights to first responders on what to expect with either technology and how to improve the performance by adjusting different system parameters.
APA, Harvard, Vancouver, ISO, and other styles
9

Kwon, Doyle, and Duk Kyung Kim. "Resource Allocation with a Rate Guarantee Constraint in Device-to-Device Underlaid Cellular Networks." Electronics 9, no. 3 (March 5, 2020): 438. http://dx.doi.org/10.3390/electronics9030438.

Full text
Abstract:
Device-to-device (D2D) communication is a crucial technique for various proximity services. In addition to high-rate transmission and high spectral efficiency, a minimum data rate is increasingly required in various applications, such as gaming and real-time audio/video transmission. In this paper, we consider D2D underlaid cellular networks and aim to minimize the total channel bandwidth while every user equipment (UE) needs to achieve a pre-determined target data rate. The optimization problem is jointly involved with matching a cellular UE (CU) to a D2D UE (DU), and with channel assignment and power control. The optimization problem is decoupled into two suboptimization problems to solve power control and channel assignment problems separately. For arbitrary matching of CU, DU, and channel, the minimum channel bandwidth of the shared channel is derived based on signal-to-interference-plus-noise ratio (SINR)-based power control. The channel assignment is a three-dimensional (3-D) integer programming problem (IPP) with a triple (CU, DU, channel). We apply Lagrangian relaxation, and then decompose the 3-D IPP into two two-dimensional (2-D) linear programming problems (LPPs). From intensive numerical results, the proposed resource allocation scheme outperforms the random selection and greedy schemes in terms of average channel bandwidth. We investigate the impact of various parameters, such as maximum D2D distance and the number of channels.
APA, Harvard, Vancouver, ISO, and other styles
10

Tamayo Segarra, Jose Ignacio, Bilal Al Jammal, and Hakima Chaouchi. "New IoT proximity service based heterogeneous RFID readers collision control." PSU Research Review 1, no. 2 (August 14, 2017): 127–49. http://dx.doi.org/10.1108/prr-03-2017-0019.

Full text
Abstract:
Purpose Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on, monitoring services became one of the major interests, including sensing technologies, and then more actuation for remote control-type of IoT applications such as smart homes, smart cities and Industry 4.0. In this paper, the authors focus on the RFID technology impairment. They propose to take advantage of the mature IoT technologies that offer native service discovery such as blutooth or LTE D2D ProSe or Wifi Direct. Using the automatic service discovery in the new framework will make heterogeneous readers aware of the presence of other readers and this will be used by the proposed distributed algorithm to better control the multiple RFID reader interference problem. The author clearly considers emerging Industry 4.0 use case, where RFID technology is of major interest for both identification and tracking. To enhance the RFID tag reading performance, collisions in the RFID frequency should be minimized with reader-to-reader coordination protocols. In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation. Design/methodology/approach In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation to study its behavior in very dense and heterogeneous RFID environments. Specifically, the author explores the coexistence of powerful static readers and small mobile readers, comparing the proposal with a standard ETSI CSMA method. The proposal reduces significantly the number of access attempts, which are resource-expensive for the readers. The results show that the objectives of DiSim are met, producing low reader collision probability and, however, having lower average readings per reader per time. Findings DiSim is evaluated with the ETSI standard LBT protocol for multi-reader environments in several environments with varied levels of reader and tag densities, having both static powerful RFID readers and heterogeneous randomly moving mobile RFID readers. It effectively reduces the number of backoffs or contentions for the RFID channel. This has high reading success rate due to the avoided collisions; however, the readers are put to wait, and DiSim has less average readings per reader per time. As an additional side evaluation, the ETSI standard LBT mechanism was found to present a good performance for low-density mid-coverage scenarios, however, with high variability on the evaluation results. Research limitations/implications To show more results, the author needs to do real experimentation in a warehouse, such as Amazon warehouse, where he expects to have more and more robots, start shelves, automatic item finding on the shelve, etc. Practical implications Future work considers experimentation in a real warehouse equipped with heterogeneous RFID readers and real-time analysis of RFID reading efficiency also combined with indoor localization and navigation for warehouse mobile robots. Social implications More automatization is expected in the future; this work makes the use of RFID technology more efficient and opens more possibilities for services deployment in different domains such as the industry which was considered not only in this paper but also in smart cites and smart homes. Originality/value Compared to the literature, the proposal offers the advantage to not be dependent on a centralized server controlling the RFID readers. It also offers the possibility for an existing RFID architecture to add new readers from a different manufacturer, as the readers using the approach will have the possibility to discover the capabilities of the new interaction other RFID readers. This solution takes advantage of the available proximity service that will be more and more offered by the IoT technologies.
APA, Harvard, Vancouver, ISO, and other styles
11

Ningombam, Devarani Devi, and Seokjoo Shin. "Non-Orthogonal Resource Sharing Optimization for D2D Communication in LTE-A Cellular Networks: A Fractional Frequency Reuse-Based Approach." Electronics 7, no. 10 (October 5, 2018): 238. http://dx.doi.org/10.3390/electronics7100238.

Full text
Abstract:
To handle the fast-growing demand for high data rate applications, the capacity of cellular networks should be reinforced. However, the available radio resources in cellular networks are scarce, and their formulation is expensive. The state-of-the art solution to this problem is a new local networking technology known as the device-to-device (D2D) communication. D2D communications have great capability in achieving outstanding performance by reusing the existing uplink cellular channel resources. In D2D communication, two devices in close proximity can communicate directly without traversing data traffic through the evolved-NodeB (eNB). This results in a reduced traffic load to the eNB, reduced end-to-end delay, and improved spectral efficiency and system performance. However, enabling D2D communication in an LTE-Advanced (LTE-A) cellular network causes severe interference to traditional cellular users and D2D pairs. To maintain the quality of service (QoS) of the cellular users and D2D pairs and reduce the interference, we propose a distance-based resource allocation and power control scheme using fractional frequency reuse (FFR) technique. We calculate the system outage probability, total throughput and spectrum efficiency for both cellular users and D2D pairs in terms of their signal-to-interference-plus-noise ratio (SINR). Our simulation results show that the proposed scheme reduces interference significantly and improves system performance compared to the random resource allocation (RRA) and resource allocation (RA) without sectorization scheme.
APA, Harvard, Vancouver, ISO, and other styles
12

Tan, Haowen, Yuanzhao Song, Shichang Xuan, Sungbum Pan, and Ilyong Chung. "Secure D2D Group Authentication Employing Smartphone Sensor Behavior Analysis." Symmetry 11, no. 8 (August 1, 2019): 969. http://dx.doi.org/10.3390/sym11080969.

Full text
Abstract:
Nowadays, with rapid advancement of both the upcoming 5G architecture construction and emerging Internet of Things (IoT) scenarios, Device-to-Device (D2D) communication provides a novel paradigm for mobile networking. By facilitating continuous and high data rate services between physically proximate devices without interconnection with access points (AP) or service network (SN), spectral efficiency of the 5G network can be drastically increased. However, due to its inherent open wireless communicating features, security issues and privacy risks in D2D communication remain unsolved in spite of its benefits and prosperous future. Hence, proper D2D authentication mechanisms among the D2D entities are of great significance. Moreover, the increasing proliferation of smartphones enables seamlessly biometric sensor data collecting and processing, which highly correspond to the user’s unique behavioral characteristics. For the above consideration, we present a secure certificateless D2D authenticating mechanism intended for extreme scenarios in this paper. In the assumption, the key updating mechanism only requires a small modification in the SN side, while the decryption information of user equipment (UEs) remains constant as soon as the UEs are validated. Note that a symmetric key mechanism is adopted for the further data transmission. Additionally, the user activities data from smartphone sensors are analyzed for continuous authentication, which is periodically conducted after the initial validation. Note that in the assumed scenario, most of the UEs are out of the effective range of cellular networks. In this case, the UEs are capable of conducting data exchange without cellular connection. Security analysis demonstrates that the proposed scheme can provide adequate security properties as well as resistance to various attacks. Furthermore, performance analysis proves that the proposed scheme is efficient compared with state-of-the-art D2D authentication schemes.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Bo, Yufeng Wang, Qun Jin, and Jianhua Ma. "Energy-efficient architecture and technologies for device to device (D2D) based proximity service." China Communications 12, no. 12 (December 2015): 32–42. http://dx.doi.org/10.1109/cc.2015.7385526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ferreira, Marcus V. G., and Flávio Henrique Teles Vieira. "Delay minimization based uplink resource allocation for device-to-device communications considering mmWave propagation." PeerJ Computer Science 7 (April 8, 2021): e462. http://dx.doi.org/10.7717/peerj-cs.462.

Full text
Abstract:
This paper addresses the resource allocation problem in multi-sharing uplink for device-to-device (D2D) communication, one aspect of 5G communication networks. The main advantage and motivation in relation to the use of D2D communication is the significant improvement in the spectral efficiency of the system when exploiting the proximity of communication pairs and reusing idle resources of the network, mainly in the uplink mode, where there are more idle available resources. An approach is proposed for allocating resources to D2D and cellular user equipments (CUE) users in the uplink of a 5G based network which considers the estimation of delay bound value. The proposed algorithm considers minimization of total delay for users in the uplink and solves the problem by forming conflict graph and by finding the maximal weight independent set. For the user delay estimation, an approach is proposed that considers the multifractal traffic envelope process and service curve for the uplink. The performance of the algorithm is evaluated through computer simulations in comparison with those of other algorithms in the literature in terms of throughput, delay, fairness and computational complexity in a scenario with channel modeling that describes the propagation of millimeter waves at frequencies above 6 GHz. Simulation results show that the proposed allocation algorithm outperforms other algorithms in the literature, being highly efficient to 5G systems.
APA, Harvard, Vancouver, ISO, and other styles
15

Charar, Mohamed Amine, and Zouhair Guennoun. "Energy efficient power control for device to device communication in 5G networks." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (August 1, 2020): 4118. http://dx.doi.org/10.11591/ijece.v10i4.pp4118-4135.

Full text
Abstract:
Next generation cellular networks require high capacity, enhanced energy efficiency and guaranteed quality of service (QoS). In order to meet these targets, device-to device (D2D) communication is being considered for future 5th generation especially for certain applications that require the proximity gain, the reuse gain, and the hop gain. In this paper, we investigate energy efficient power control for the uplink of an OFDMA (orthogonal frequency-division multiple access) single-cell communication system composed of both regular cellular users and device to device (D2D) pairs. Firstly, we analyze and mathematically model the actual requirements forD2D communications and traditional cellular links in terms of minimum rate and maximum power requirement. Secondly, we use fractional programming in order to transform the original problem into an equivalent concave one and we use the non-cooperative Game theory in order to characterize the equilibrium. Then, the solution of the game is given as a water-filling power allocation. Furthermore, we implement a distributed power allocation scheme using three ways: a) Fractional programming techniques b) Closed form expression (the novelty is the use of wright omega function). c) Inverse water filling. Finally, simulations in both static and dynamic channel setting are presented to illustrate the improved performance in term of EE, SE (spectral efficiency) and time of execution of the iterative algorithm (Dinkelbach) than the closed form algorithms.
APA, Harvard, Vancouver, ISO, and other styles
16

Lan, Yanwen, Xiaoxiang Wang, Chong Wang, Dongyu Wang, and Qi Li. "Collaborative Computation Offloading and Resource Allocation in Cache-Aided Hierarchical Edge-Cloud Systems." Electronics 8, no. 12 (November 30, 2019): 1430. http://dx.doi.org/10.3390/electronics8121430.

Full text
Abstract:
The hierarchical edge-cloud enabled paradigm has recently been proposed to provide abundant resources for 5G wireless networks. However, the computation and communication capabilities are heterogeneous which makes the potential advantages difficult to be fully explored. Besides, previous works on mobile edge computing (MEC) focused on server caching and offloading, ignoring the computational and caching gains brought by the proximity of user equipments (UEs). In this paper, we investigate the computation offloading in a three-tier cache-assisted hierarchical edge-cloud system. In this system, UEs cache tasks and can offload their workloads to edge servers or adjoining UEs by device-to-device (D2D) for collaborative processing. A cost minimization problem is proposed by the tradeoff between service delay and energy consumption. In this problem, the offloading decision, the computational resources and the offloading ratio are jointly optimized in each offloading mode. Then, we formulate this problem as a mixed-integer nonlinear optimization problem (MINLP) which is non-convex. To solve it, we propose a joint computation offloading and resource allocation optimization (JORA) scheme. Primarily, in this scheme, we decompose the original problem into three independent subproblems and analyze their convexity. After that, we transform them into solvable forms (e.g., convex optimization problem or linear optimization problem). Then, an iteration-based algorithm with the Lagrange multiplier method and a distributed joint optimization algorithm with the adoption of game theory are proposed to solve these problems. Finally, the simulation results show the performance of our proposed scheme compared with other existing benchmark schemes.
APA, Harvard, Vancouver, ISO, and other styles
17

Sizov, V. A., D. M. Malinichev, and Kh K. Kuchmezov. "The study of promising secure information systems based on signal modeling." Open Education 23, no. 2 (May 14, 2019): 69–77. http://dx.doi.org/10.21686/1818-4243-2019-2-69-77.

Full text
Abstract:
The aim of the study is to increase the effectiveness of information security management through the use of 5G networks. The transition to the fifth-generation network does not solve the existing problems of information security and leads to the emergence of new threats. The main objective of each modulation method of signals is to ensure high bandwidth, proper transmission quality in a noisy communication channel, using the minimum amount of energy. One of the most effective indicators of increasing the level of information security in wireless networks is quadrature modulation, which is used in such networks as: LTE, WiMAX, McWill, DVB-T (T2), Wi-Fi and other radio access networks [1].One of the promising directions for the development of 5G networks is the use of higher frequency ranges, such as the range of millimeter waves (from 30 to 300 GHz) [2, 3]. A feature of the millimeter wave range is that they provide much wider spectral bands, making it possible to significantly increase the bandwidth in the channels. Thus, when studying prospective protected information systems based on the use of 5G network technology, it is advisable to use a simulation of the signals of the channel-level interaction of subscribers, which allows you to evaluate the basic security parameters at the physical level.Materials and research methods. Fifth generation networks will simultaneously look like any previous generation of mobile networks, and at the same time they will differ significantly from them – and there are a number of explanations that become more obvious if you think about how these changes affect the principles of user and equipment safety networks of the fifth generation.Widespread in the field of digital information transmission, including 5G networks, has received combinational modulation, called quadrature amplitude modulation.Multiposition signals have the greatest spectral efficiency, of which four-position phase modulation and sixteen-position quadrature amplitude modulation are most often used.The quadrature amplitude modulation is a kind of multi-position amplitude-phase modulation, in addition to the phase, the amplitude of the signal for a given type of modulation will also carry information. This leads to the fact that for a given frequency band the amount of transmitted information increases.A brief overview of the existing modulation approaches is presented OFDM (english. Orthogonal frequency-division multiplexing) [4, 5] systems and methods for forming solutions of signal modulation problems for building such systems/Results. Currently, OFDM technology is widely used in modern wireless Internet systems. High data transfer rates in OFDM systems are achieved using parallel information transfer over a large number of orthogonal frequency subchannels (subcarriers) [6].The method of synthesizing signal-code constructions with orthogonal frequency multiplexing provides for different scenarios for the use of semi-square modulation depending on the requirements for interception protection, as well as balancing between spectral and energy efficiency. This method can be used in two cases: with alternative and consistent transmission of signals. In the case of alternative transmission, only one of the four subcarriers is used during one channel interval. For efficient use of bandwidth, the proposed method involves the use of the spectrum of three other subcarriers for data transmission in D2D channels (this creates a connection between two user devices that are in close proximity), which allows you to further avoid interference between fixed channels and D2D communication channels.Findings. At present, 5G networks can be considered as one of the necessary components of the digital transformation and digital economy, while the main task in ensuring security in cellular communications is protection against eavesdropping. However, in the future world of smartphones and the Internet of things, in environments with a large number of mechanisms, the probability of listening is likely to fade into the background. Instead, you have to think about such things as data manipulation attacks, which, for example, can be used to command the mechanisms to perform certain actions (for example, open the door or take control of an unmanned vehicle). Mobile network operators, like consumer electronics manufacturers, will be able to offer “security as a service,” with the result that application providers will be able to apply additional levels of security over existing secure cellular network channels when transferring certain types of data. [7] Due to the better spectral density, the proposed signal conditioning method makes it possible to use prototypes of window functions with the best spatial localization properties without violating the orthogonality condition of the signal bases, and accordingly does not require the use of cyclic prefixes when generating the OFDM signal.
APA, Harvard, Vancouver, ISO, and other styles
18

"D2d Big Data Analytics for user Behavior Over Cellular Networks for Improving Content Deliveries." International Journal of Recent Technology and Engineering 8, no. 2 (July 30, 2019): 3000–3003. http://dx.doi.org/10.35940/ijrte.b2826.078219.

Full text
Abstract:
(Nowadays cellular phones are profoundly increasing and present network capacity need to be increased to meet the growing demands of user equipment (UE) that has led to evolution of cellular and communication networks. Device-to-Device (D2D) communication is a usage technology that extends enormous features that can be incorporated with LTE and conssidesred as a finest technological componentespecially for the 5G network. Generally the 5G wireless networks are being introsduced to improve the present technology that meets the future demands extending efficient and reliable solutions. This Device-to-Device (D2D) communication can be established within LTE that limits to its proximity and comes with various advantages such as increase of spectral efficiency, energy efficiency, reduction of transmission delay, efficient offloaded traffic, avoiding congestion in cellular network. This paper deals D2D entities that include user behaviors, content deliveries and characteristics in big data platform that utilizes sharing large scale data accurately and effectively. Besides D2D, the proposed work builds concept of big data analytics integrated with D2D for effectively improving the content deliveries while offloading large data set.The presentwork also discussesbig data predictive analysis for the users based on D2D network services that help for further work.
APA, Harvard, Vancouver, ISO, and other styles
19

Ochia, Okechukwu E., and Elvis Obi. "Capacity Analysis of a Full Duplex Device-to-Device Wireless Network using Voronoi diagrams and Distance Distributions." FUOYE Journal of Engineering and Technology 3, no. 2 (September 30, 2018). http://dx.doi.org/10.46792/fuoyejet.v3i2.254.

Full text
Abstract:
Full duplex (FD) and Device-to-Device (D2D) communication are two revolutionary protocols that have enabled better spectrum utilization and more reliable data delivery in wireless networks. In addition, stochastic geometry tools have become necessary to characterize the randomness in the present networks with respect to the irregular architecture and the competing access schemes. This work analyses the performance of a mobile network comprising nodes which are randomly distributed in a square area, which are equipped with FD radios, and can communicate using D2D. The base station (BS) nodes and user nodes in the network are modelled as points of a homogenous binomial point process (BPP) and a homogeneous Poisson point process (PPP) respectively. The network area is tessellated into cells using Voronoi diagrams which approximates to a nearest BS-to-user node association policy. The user nodes can cache popular file objects which are available in a centralized server in the network and other nodes in proximity can request for such objects and receive them using D2D. Using well known distance distribution expressions and stochastic geometry analysis, the distribution of the signal-to-interference ratio (SIR), the D2D and FD collaboration probabilities and the average coverage probability are derived. It is shown that a network-wide quality of service is maintained without additional spectrum utilization when the user nodes can be intelligently tuned to transmit and receive using FD and/or D2D modes. Keywords— Device-to-Device Communication, Full Duplex Communication, stochastic geometry analysis, Voronoi diagrams, Distance Distributions
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography