Journal articles on the topic 'D614G'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'D614G.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yazhini, Arangasamy. "D614G substitution at the hinge region enhances the stability of trimeric SARS-CoV-2 spike protein." Bioinformation 17, no. 3 (2021): 439–45. http://dx.doi.org/10.6026//97320630017439.
Full textHernandez Avila, Carlos Enrique, Carlos Alexander Ortega ´Perez, Noé Rigoberto Rivera, and Xochitl Sandoval López. "Análisis de la mutación D614G encontrada en secuencias del genoma completo de SARS-CoV-2 en El Salvador." Alerta, Revista científica del Instituto Nacional de Salud 4, no. 1 (2021): 72–77. http://dx.doi.org/10.5377/alerta.v4i1.10683.
Full textKullappan, Malathi, Jenifer M Ambrose, and Surapaneni Krishna Mohan. "Lead Identification for Severe Acute Respiratory Syndrome Coronavirus-2 Spike D614G Variant of COVID-19: A virtual Screening Process." Biomedical and Pharmacology Journal 14, no. 4 (2021): 1929–39. http://dx.doi.org/10.13005/bpj/2291.
Full textBenton, Donald J., Antoni G. Wrobel, Chloë Roustan, et al. "The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2." Proceedings of the National Academy of Sciences 118, no. 9 (2021): e2022586118. http://dx.doi.org/10.1073/pnas.2022586118.
Full textWang, Hai-xin, Li Zhang, Zi-teng Liang, et al. "Infectivity and antigenicity of pseudoviruses with high-frequency mutations of SARS-CoV-2 identified in Portugal." Archives of Virology 167, no. 2 (2022): 459–70. http://dx.doi.org/10.1007/s00705-021-05327-0.
Full textGonzález-Puelma, Jorge, Jacqueline Aldridge, Marco Montes de Oca, et al. "Mutation in a SARS-CoV-2 Haplotype from Sub-Antarctic Chile Reveals New Insights into the Spike’s Dynamics." Viruses 13, no. 5 (2021): 883. http://dx.doi.org/10.3390/v13050883.
Full textAhangarzadeh, Shahrzad, Alireza Yousefi, Mohammad Mehdi Ranjbar, et al. "Association of Clinical Features with Spike Glycoprotein Mutations in Iranian COVID-19 Patients." Journal of Clinical Medicine 11, no. 21 (2022): 6315. http://dx.doi.org/10.3390/jcm11216315.
Full textChoi, Kwang-Eun, Jeong-Min Kim, JeeEun Rhee, Ae Kyung Park, Eun-Jin Kim, and Nam Sook Kang. "Molecular Dynamics Studies on the Structural Characteristics for the Stability Prediction of SARS-CoV-2." International Journal of Molecular Sciences 22, no. 16 (2021): 8714. http://dx.doi.org/10.3390/ijms22168714.
Full textMat Jusoh, Siti Asmaa, Parisa Foroozandeh, Yan Fen Lee, Mardani Abdul Halim, Manoj Kumar Laskmanan, and Shaharum Shamsuddin. "COVID-19 Mini-Review: D614G Mutation as an Independent Risk-Factor to the Expression of ACE2 and DPP4 Associated Increased Severity in COVID-19." Sains Malaysiana 50, no. 4 (2021): 1175–86. http://dx.doi.org/10.17576/jsm-2021-5004-27.
Full textSukhova, Maria, Maria Byazrova, Artem Mikhailov, et al. "Humoral Immune Responses in Patients with Severe COVID-19: A Comparative Pilot Study between Individuals Infected by SARS-CoV-2 during the Wild-Type and the Delta Periods." Microorganisms 11, no. 9 (2023): 2347. http://dx.doi.org/10.3390/microorganisms11092347.
Full textBanerjee, Shuvam, Sreejita Dutta, Shrinjana Dhar, and Pritha Bhattacharjee. "Analysis of mutational spectra in SARS-CoV-2 spike protein and its course of evolution to predict the ‘Alarming Variants’ for the upcoming wave of pandemic." Journal of Scientific Research 66, no. 05 (2022): 24–33. http://dx.doi.org/10.37398/jsr.2022.660505.
Full textVergori, Alessandra, Alessandro Cozzi-Lepri, Giulia Matusali, et al. "SARS-CoV-2 Omicron Variant Neutralization after Third Dose Vaccination in PLWH." Viruses 14, no. 8 (2022): 1710. http://dx.doi.org/10.3390/v14081710.
Full textLusvarghi, Sabrina, Charles B. Stauft, Russell Vassell, et al. "Effects of N-glycan modifications on spike expression, virus infectivity, and neutralization sensitivity in ancestral compared to Omicron SARS-CoV-2 variants." PLOS Pathogens 19, no. 11 (2023): e1011788. http://dx.doi.org/10.1371/journal.ppat.1011788.
Full textAl-jaf, Sirwan M. A., and Sherko S. Niranji. "Detection of SARS-CoV-2 Reinfections by Rapid Inexpensive Methods." ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 10, no. 1 (2022): 44–48. http://dx.doi.org/10.14500/aro.10916.
Full textHuang, Szu-Wei, Sorin O. Miller, Chia-Hung Yen, and Sheng-Fan Wang. "Impact of Genetic Variability in ACE2 Expression on the Evolutionary Dynamics of SARS-CoV-2 Spike D614G Mutation." Genes 12, no. 1 (2020): 16. http://dx.doi.org/10.3390/genes12010016.
Full textWarwicker, Jim. "A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium." Briefings in Bioinformatics 22, no. 2 (2021): 1499–507. http://dx.doi.org/10.1093/bib/bbab056.
Full textMat Jusoh, Siti Asmaa, Danesh Thangeswaran, Muhammad Syahir Hakimi Mohd Hazli, Mohd Firdaus Raih, Nurulasma Abdullah, and Shaharum Shamsuddin. "Construction of Multi-Epitopes Vaccine Candidate against SARS-CoV-2 D614G Variant." Sains Malaysiana 51, no. 9 (2022): 2985–97. http://dx.doi.org/10.17576/jsm-2022-5109-19.
Full textLi, Gen, Zhongcheng Zhou, Peng Du, et al. "The SARS-CoV-2 spike L452R-E484Q variant in the Indian B.1.617 strain showed significant reduction in the neutralization activity of immune sera." Precision Clinical Medicine 4, no. 3 (2021): 149–54. http://dx.doi.org/10.1093/pcmedi/pbab016.
Full textLestari, Nur Ayu, Muhammad Isrul, Dwi Syah Fitrah Ramadhan, and Fatahu. "Skrining Virtual Berbasis Farmakofor Dari Database Bahan Alam Sebagai Inhibitor Alosterik Mutan T790M/C797 EGFR Untuk Penemuan Obat Kanker Paru." Jurnal Pharmacia Mandala Waluya 3, no. 3 (2024): 168–86. http://dx.doi.org/10.54883/jpmw.v3i3.102.
Full textSeadawy, Mohamed G., Abdel Rahman N. Zekri, Aya A. Saeed, Emmanuel James San, and Amr M. Ageez. "Candidate Multi-Epitope Vaccine against Corona B.1.617 Lineage: In Silico Approach." Life 12, no. 11 (2022): 1715. http://dx.doi.org/10.3390/life12111715.
Full textVitasari, Riski, Muhammad Isrul, and Dwi Syah Fitrah Ramadhan. "Kajian Aktivitas Metabolit Andrographolide dan Turunannya Dalam Herba Sambiloto (Andrographis paniculata) Terhadap Mutasi D614G SARS-CoV-2 Protein Spike Secara In Silico." Jurnal Pharmacia Mandala Waluya 1, no. 6 (2022): 290–304. http://dx.doi.org/10.54883/28296850.v1i6.282.
Full textVillarino, Elsa, Xianding Deng, Carol A. Kemper, et al. "Introduction, Transmission Dynamics, and Fate of Early Severe Acute Respiratory Syndrome Coronavirus 2 Lineages in Santa Clara County, California." Journal of Infectious Diseases 224, no. 2 (2021): 207–17. http://dx.doi.org/10.1093/infdis/jiab199.
Full textRadion, Elizaveta I., Vladimir E. Mukhin, Alyona V. Kholodova, et al. "Functional Characteristics of Serum Anti-SARS-CoV-2 Antibodies against Delta and Omicron Variants after Vaccination with Sputnik V." Viruses 15, no. 6 (2023): 1349. http://dx.doi.org/10.3390/v15061349.
Full textGoldman, Jason D., Kai Wang, Katharina Röltgen, et al. "Reinfection with SARS-CoV-2 and Waning Humoral Immunity: A Case Report." Vaccines 11, no. 1 (2022): 5. http://dx.doi.org/10.3390/vaccines11010005.
Full textKoenig, Paul-Albert, and Florian I. Schmidt. "Spike D614G — A Candidate Vaccine Antigen Against Covid-19." New England Journal of Medicine 384, no. 24 (2021): 2349–51. http://dx.doi.org/10.1056/nejmcibr2106054.
Full textMarín-Palma, Damariz, Jorge H. Tabares-Guevara, María I. Zapata-Cardona, et al. "Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells through Multiple Antiviral Mechanisms." Molecules 26, no. 22 (2021): 6900. http://dx.doi.org/10.3390/molecules26226900.
Full textAnggraini, Nina Bunga, and Dwi Listyorini. "S-D614G Mutation Reveals the Euro-America and East-Asia Origin SARS-CoV-2 Virus Spread in Indonesia." Jurnal Riset Biologi dan Aplikasinya 3, no. 2 (2021): 45–53. http://dx.doi.org/10.26740/jrba.v3n2.p45-53.
Full textTrinité, Benjamin, Edwards Pradenas, Silvia Marfil, et al. "Previous SARS-CoV-2 Infection Increases B.1.1.7 Cross-Neutralization by Vaccinated Individuals." Viruses 13, no. 6 (2021): 1135. http://dx.doi.org/10.3390/v13061135.
Full textPercivalle, Elena, Josè Camilla Sammartino, Irene Cassaniti, et al. "Macrophages and Monocytes: “Trojan Horses” in COVID-19." Viruses 13, no. 11 (2021): 2178. http://dx.doi.org/10.3390/v13112178.
Full textWang, Yunxiang, Hong Chen, Hongjuan Wei, Zhen Rong, and Shengqi Wang. "Tetra-primer ARMS-PCR combined with dual-color fluorescent lateral flow assay for the discrimination of SARS-CoV-2 and its mutations with a handheld wireless reader." Lab on a Chip 22, no. 8 (2022): 1531–41. http://dx.doi.org/10.1039/d1lc01167g.
Full textZhou, Hao, Belinda M. Dcosta, Nathaniel R. Landau, and Takuya Tada. "Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies." Viruses 14, no. 6 (2022): 1334. http://dx.doi.org/10.3390/v14061334.
Full textHao, Zhaonian, Ruyuan Li, Chengyi Hao, Haoyuan Zhao, Xueyan Wan, and Dongsheng Guo. "Global Evidence of Temperature Acclimation of COVID‐19 D614G Linage." Global Challenges 5, no. 6 (2021): 2000132. http://dx.doi.org/10.1002/gch2.202000132.
Full textShi, Aria C., and Xuping Xie. "Making sense of spike D614G in SARS-CoV-2 transmission." Science China Life Sciences 64, no. 7 (2021): 1062–67. http://dx.doi.org/10.1007/s11427-020-1893-9.
Full textZhou, Bin, Tran Thi Nhu Thao, Donata Hoffmann, et al. "SARS-CoV-2 spike D614G change enhances replication and transmission." Nature 592, no. 7852 (2021): 122–27. http://dx.doi.org/10.1038/s41586-021-03361-1.
Full textPlante, Jessica A., Yang Liu, Jianying Liu, et al. "Author Correction: Spike mutation D614G alters SARS-CoV-2 fitness." Nature 595, no. 7865 (2021): E1. http://dx.doi.org/10.1038/s41586-021-03657-2.
Full textAl-Jaf, Sirwan M. A., Sherko S. Niranji, and Zana H. Mahmood. "Rapid, inexpensive methods for exploring SARS CoV-2 D614G mutation." Meta Gene 30 (December 2021): 100950. http://dx.doi.org/10.1016/j.mgene.2021.100950.
Full textSia, Boon Zhan, Wan Xin Boon, Yoke Yee Yap, Shalini Kumar, and Chong Han Ng. "Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins." F1000Research 11 (May 18, 2022): 9. http://dx.doi.org/10.12688/f1000research.72904.2.
Full textLeung, Kathy, Yao Pei, Gabriel M. Leung, Tommy TY Lam, and Joseph T. Wu. "Estimating the transmission advantage of the D614G mutant strain of SARS-CoV-2, December 2019 to June 2020." Eurosurveillance 26, no. 49 (2021). http://dx.doi.org/10.2807/1560-7917.es.2021.26.49.2002005.
Full textDaniloski, Zharko, Tristan X. Jordan, Juliana K. Ilmain, et al. "The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types." eLife 10 (February 11, 2021). http://dx.doi.org/10.7554/elife.65365.
Full textWu, Jianhua, Hong-Xing Zhang, and Jilong Zhang. "Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations." Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d2cp04349a.
Full textLiang, Ziteng, Jincheng Tong, Ziqi Sun, et al. "Rational prediction of immunogenicity clustering through cross‐reactivity analysis of thirteen SARS‐CoV‐2 variants." Journal of Medical Virology 96, no. 1 (2024). http://dx.doi.org/10.1002/jmv.29314.
Full textVaira, L. A., J. R. Lechien, G. Deiana, et al. "Prevalence of olfactory dysfunction in D614G, alpha, delta and omicron waves: a psychophysical case-control study." Rhinology journal, October 22, 2022, 0. http://dx.doi.org/10.4193/rhin22.294.
Full textMartins, Mathias, Mohammed Nooruzzaman, Jessie Lee Cunningham, et al. "The SARS-CoV-2 Spike is a virulence determinant and plays a major role on the attenuated phenotype of Omicron virus in a feline model of infection." Journal of Virology, February 29, 2024. http://dx.doi.org/10.1128/jvi.01902-23.
Full text"The Specification of Observed COVID-19 in England: A Review of Auto-Mutation." Biointerface Research in Applied Chemistry 11, no. 6 (2021): 14794–808. http://dx.doi.org/10.33263/briac116.1479414808.
Full textGoldswain, Hannah, Xiaofeng Dong, Rebekah Penrice-Randal, et al. "The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection." Genome Biology 24, no. 1 (2023). http://dx.doi.org/10.1186/s13059-023-02881-5.
Full textBauer, Lisa, Melanie Rissmann, Feline F. W. Benavides, et al. "In vitro and in vivo differences in neurovirulence between D614G, Delta And Omicron BA.1 SARS-CoV-2 variants." Acta Neuropathologica Communications 10, no. 1 (2022). http://dx.doi.org/10.1186/s40478-022-01426-4.
Full textWu, Jiajing, Li Zhang, Yue Zhang, et al. "The Antigenicity of Epidemic SARS-CoV-2 Variants in the United Kingdom." Frontiers in Immunology 12 (June 17, 2021). http://dx.doi.org/10.3389/fimmu.2021.687869.
Full textRaghav, Sunil, Arup Ghosh, Jyotirmayee Turuk, et al. "Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity." Frontiers in Microbiology 11 (November 23, 2020). http://dx.doi.org/10.3389/fmicb.2020.594928.
Full textZhang, Lizhou, Cody B. Jackson, Huihui Mou, et al. "SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity." Nature Communications 11, no. 1 (2020). http://dx.doi.org/10.1038/s41467-020-19808-4.
Full textOuarab, Maha, Elarbi Bouaiti, Zineb Rhazzar, et al. "Immunogenicity of two‐dose sinopharm BBIB‐CorV vaccine in Morocco: One‐year follow‐up and neutralizing activity against severe acute respiratory syndrome coronavirus 2 variants of concern." Immunity, Inflammation and Disease 12, no. 11 (2024). http://dx.doi.org/10.1002/iid3.1359.
Full text