Academic literature on the topic 'Dam retirement – Oregon – Sandy River'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dam retirement – Oregon – Sandy River.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dam retirement – Oregon – Sandy River"

1

Ding, Y., and M. S. Altinakar. "Simulation and control of morphological changes due to dam removal in the Sandy River, Oregon, USA." Proceedings of the International Association of Hydrological Sciences 367 (March 3, 2015): 207–14. http://dx.doi.org/10.5194/piahs-367-207-2015.

Full text
Abstract:
Abstract. A one-dimensional channel evolution simulation model (CCHE1D) is applied to assess morphological changes in a reach of the Sandy River, Oregon, USA, due to the Marmot Dam removal in 2007. Sediment transport model parameters (e.g. sediment transport capacity, bed roughness coefficient) were calibrated using observed bed changes after the dam removal. The validated model is then applied to assess long-term morphological changes in response to a 10-year hydrograph selected from historical storm water records. The long-term assessment of sedimentation gives a reasonable prediction of morphological changes, expanding erosion in reservoir and growing deposition immediately downstream of the dam site. This prediction result can be used for managing and planning river sedimentation after dam removal. A simulation-based optimization model is also applied to determine the optimal sediment release rates during dam-removal that will minimize the morphological changes in the downstream reaches.
APA, Harvard, Vancouver, ISO, and other styles
2

Cui, Yantao, John K. Wooster, Christian A. Braudrick, and Bruce K. Orr. "Lessons Learned from Sediment Transport Model Predictions and Long-Term Postremoval Monitoring: Marmot Dam Removal Project on the Sandy River in Oregon." Journal of Hydraulic Engineering 140, no. 9 (September 2014): 04014044. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000894.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dam retirement – Oregon – Sandy River"

1

Keith, Mackenzie Karli. "Reservoir Evolution Following the Removal of Marmot Dam on the Sandy River, Oregon." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/532.

Full text
Abstract:
The October 2007 removal of Marmot Dam, a 14.3-m-tall dam on the Sandy River in northwestern Oregon storing approximately 730,000 m3 of impounded sediment, provided an opportunity to study short- and long-term geomorphic effects of dam removal. Monitoring reservoir morphology during the two years following dam decommissioning yields a timeline of reservoir channel change. Comparison of a pre-dam survey in 1911 with post-removal surveys provides a basis from which to gage the Reservoir Reach evolution in the context of pre-dam conditions. Analyses of time-lapse photography, topographic surveys, and repeat LiDAR data sets provide detailed spatial and temporal documentation of a release of sediment from the reservoir following dam removal. The majority of morphologic changes to the reservoir largely took place during the first few days and weeks following removal. Channel incision and widening, along with gradient changes through the Reservoir Reach, exhibit diminishing changes with time. Channel incision rates of up to 13 m/hr and widening rates of up to 26 m/hr occurred within the first 24 hours following breaching of the coffer dam. Although channel position through the Reservoir Reach has remained relatively stable due to valley confinement, its width increased substantially. The channel reached an average width of 45 m within two weeks of breaching, but then erosion rates slowed and the channel width reached about 70 to 80 m after one and two years, respectively. Diminishing volumes of evacuated sediment were measured over time through quantitative analysis of survey datasets. About 15 percent of the initial impounded sediment was eroded from the Reservoir Reach within 60 hours of breaching; after one and two years, 50 and 58 percent was eroded, respectively. Grain-size analysis of terraces cut into reservoir fill following dam removal show that bed material coarsened over time at fixed elevations and vertically downward as the channel incised. Overall, these findings indicate valley morphology and local in-channel bedrock topography controlled the spatial distribution of sediment within the reservoir reach while variability in river discharge determined the timing of episodic sediment release. Changes within the Reservoir Reach shortly after dam removal and subsequent evolution over the two years following removal are likely attributable to 1) the timing and intensity of flow events, 2) the longitudinal and stratigraphic spatial variations in deposit grain-size distributions initially and over time, and 3) the pre-dam topography and existing valley morphology.
APA, Harvard, Vancouver, ISO, and other styles
2

Anthony, Lowell Henry. "Detecting Geomorphic Change and Stream Channel Evolution on the Sandy River, Oregon, Using Lidar Following Dam Removal in 2007." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4844.

Full text
Abstract:
Following the removal of Marmot Dam on the Sandy River, Oregon, several Lidar flights were flown over the area of the former reservoir. The resultant sequential DEMs permitted calculation of reach-scale volumetric erosion and aggradation following dam removal. This allows for change detection across the entire affected reach of the former impoundment rather than just at several cross sections. In the first year there was a net loss of blank sediment in the dewatered reach. Subsequent flights show continued degradation of 145,649 m3 as well as aggradation of 6,232 m3. Sediment transport reached quasi-equilibrium in 2012 with a net change of 65 m3. In addition, this technique allows the extraction of cross-section information which shows that the channel continues to be actively migrating in some areas while also being constrained by bedrock features from past volcanism in some reaches. This study further shows the capability of lidar to measure rates of aggradation and degradation for an entire river system instead of reach specific extrapolations and that repeat lidar flights can more than adequately assess the changing nature of entire stream reaches more rapidly and more cost effectively than traditional field techniques. In addition: The utility of Lidar to do river management with repeat returns, having successive lidar acquisitions run on the watershed level will help us to gain insight into the correlation to precipitation events and geomorphological change in a given reach. Lidar can be used to assess the validity of channel evolution models. Sequential runs of lidar can be used to adjust the overall effectiveness of current CEM's and create new ones that consider reach specific geomorphology. Dam removal projects should incorporate initial lidar flights prior to removal and follow acquisitions based on known CEM's for the region and overall region-specific physiography. Sequential lidar should be used for hazard mitigation and geohazards analysis with an acquisition timeframe that is appropriate for the region's physiography, geology, geomorphology and the return interval of the hazard being monitored.
APA, Harvard, Vancouver, ISO, and other styles
3

Stewart, Gregory B. "Patterns and processes of sediment transport following sediment-filled dam removal in gravel bed rivers." Thesis, 2006. http://hdl.handle.net/1957/1815.

Full text
Abstract:
Graduation date: 2006
Dam removal is increasingly viewed as a river restoration tool because dams affect so many aspects of river hydrology, geomorphology, and ecology; but removal also has impacts. When a dam is removed, sediment accumulated over a dam’s lifetime may be transported downstream; and the timing, fate and consequences of this sediment remain some of the greatest unknowns associated with dam removal. In this thesis, I develop a conceptual model for erosion and deposition following removal of sediment-filled dams in mountain streams, and use field studies to document actual change. The data show that reservoir erosion in mountain rivers is likely to occur by knickpoint migration, with 85% of stored sediment being released during a single storm event in two field studies, at shear stresses less than that required for mobilization of the median surface particle size. Coarse sediment is predicted to deposit close to the dam with channel aggradation decreasing exponentially with increasing distance downstream, although some channel features are shown to have a greater propensity for aggradation than others. Field studies show that turbidity associated with dam removal and reservoir erosion may decrease hyporheic exchange, but gravel deposition (e.g., 470 m3 of gravel from Dinner Creek Dam) has the potential to more than offset that decrease, and increased hyporheic exchange is shown to reduce diurnal temperature change. Macroinvertebrate density and taxa richness did not respond to dam removal itself, but rather with time-lagged reservoir erosion. Following reservoir erosion, macroinvertebrate density recovered quickly, although longterm taxa community composition appears to be altered. On the Sandy River, field measurements of shear stress and patterns of sediment deposition following cold lahars were used as an analog to predict the fate of fine sediment, which is likely to deposit far from the dam. Results show that the Sandy River has little capacity for fine sediment storage in pools above RK 6.4 (~ 42 kilometers below Marmot Dam) at discharges associated with reservoir sediment releases. Taken as a whole, this paper illustrates a complex suite of process that may accompany removal of sediment-filled dams in mountain rivers.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Dam retirement – Oregon – Sandy River"

1

Major, Jon J. Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dam retirement – Oregon – Sandy River"

1

Keith, Mackenzie. Reservoir Evolution Following the Removal of Marmot Dam on the Sandy River, Oregon. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anthony, Lowell. Detecting Geomorphic Change and Stream Channel Evolution on the Sandy River, Oregon, Using Lidar Following Dam Removal in 2007. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography