Books on the topic 'Data classification and machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Data classification and machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Suthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3.
Full textPham, Thuy T. Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98675-3.
Full textJahrestagung, Gesellschaft für Klassifikation. Data analysis, machine learning and applications: Proceedings of the 31st Annual Conference of the Gesellschaft fü̈r Klassifikation e.V., Albert-Ludwigs-Universität Freiburg, March 7-9, 2007. Edited by Preisach Christine. Berlin: Springer, 2008.
Find full textShuurmans, Dale Eric. Effective classification learning. Toronto: University of Toronto, 1996.
Find full textDean, Jared. Big Data, Data Mining, and Machine Learning. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118691786.
Full textFriedman, Craig. Utility-based learning from data. Boca Raton: Chapman & Hall/CRC, 2010.
Find full textNicosia, Giuseppe, Panos Pardalos, Giovanni Giuffrida, Renato Umeton, and Vincenzo Sciacca, eds. Machine Learning, Optimization, and Data Science. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13709-0.
Full textPreisach, Christine, Hans Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker, eds. Data Analysis, Machine Learning and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78246-9.
Full textNicosia, Giuseppe, Panos Pardalos, Giovanni Giuffrida, and Renato Umeton, eds. Machine Learning, Optimization, and Big Data. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72926-8.
Full textPardalos, Panos M., Piero Conca, Giovanni Giuffrida, and Giuseppe Nicosia, eds. Machine Learning, Optimization, and Big Data. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51469-7.
Full textNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vincenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, and Renato Umeton, eds. Machine Learning, Optimization, and Data Science. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64580-9.
Full textNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vincenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, and Renato Umeton, eds. Machine Learning, Optimization, and Data Science. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0.
Full textPardalos, Panos, Mario Pavone, Giovanni Maria Farinella, and Vincenzo Cutello, eds. Machine Learning, Optimization, and Big Data. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27926-8.
Full textPatgiri, Ripon, Sivaji Bandyopadhyay, Malaya Dutta Borah, and Dalton Meitei Thounaojam, eds. Big Data, Machine Learning, and Applications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62625-9.
Full textNicosia, Giuseppe, Panos Pardalos, Renato Umeton, Giovanni Giuffrida, and Vincenzo Sciacca, eds. Machine Learning, Optimization, and Data Science. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7.
Full textMyles, White John, ed. Machine learning for hackers. Sebastopol, CA: O'Reilly Media, 2012.
Find full textAo, Sio-Iong. Advances in Machine Learning and Data Analysis. Dordrecht: Springer Netherlands, 2010.
Find full textYu, Shi, Léon-Charles Tranchevent, Bart De Moor, and Yves Moreau. Kernel-based Data Fusion for Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19406-1.
Full textAmouzegar, Mahyar A., ed. Advances in Machine Learning and Data Analysis. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3177-8.
Full textReddy Edla, Damodar, Pawan Lingras, and Venkatanareshbabu K., eds. Advances in Machine Learning and Data Science. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8569-7.
Full textSammut, Claude, and Geoffrey I. Webb, eds. Encyclopedia of Machine Learning and Data Mining. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7.
Full textSpiliopoulou, Myra, Lars Schmidt-Thieme, and Ruth Janning, eds. Data Analysis, Machine Learning and Knowledge Discovery. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01595-8.
Full textHassanien, Aboul Ella, Ashraf Darwish, Sherine M. Abd El-Kader, and Dabiah Ahmed Alboaneen, eds. Enabling Machine Learning Applications in Data Science. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6129-4.
Full textMola, Francesco, Claudio Conversano, and Maurizio Vichi, eds. Classification, (Big) Data Analysis and Statistical Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-55708-3.
Full textBuntine, Wray. Myths and legends in learning classification rules. Moffett Field, Calif: NASA, Ames Research Center, Research Institute for Advanced Computer Science, 1990.
Find full textUtgoff, Paul E. Machine learning of inductive bias. Boston: Kluwer Academic Publishers, 1986.
Find full textGärtner, Thomas. Kernels for structured data. Hackensack, NJ: World Scientific, 2008.
Find full textEibe, Frank, and Hall Mark A, eds. Data mining: Practical machine learning tools and techniques. 3rd ed. Burlington, MA: Morgan Kaufmann, 2011.
Find full textB, Rieger Burghard, Amouzegar Mahyar A, and SpringerLink (Online service), eds. Machine Learning and Systems Engineering. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textBerrar, Daniel. Machine learning methods for analyzing DNA microarray data. [S.l: The Author), 2004.
Find full textPerner, Petra, ed. Machine Learning and Data Mining in Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31537-4.
Full textPerner, Petra, ed. Machine Learning and Data Mining in Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23199-5.
Full textPerner, Petra, ed. Machine Learning and Data Mining in Pattern Recognition. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62416-7.
Full textPham, Thuy T. Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Springer, 2019.
Find full textPham, Thuy T. Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Springer, 2018.
Find full textFletcher, Justin Barrows Swore. A constructive approach to hybrid architectures for machine learning. 1994.
Find full textSuthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning (Integrated Series in Information Systems). Springer, 2015.
Find full textClassification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence (Natural Computing Series). Springer, 2007.
Find full textDulhare, Uma N., Khaleel Ahmad, and Khairol Amali Bin Ahmad, eds. Machine Learning and Big Data. Wiley, 2020. http://dx.doi.org/10.1002/9781119654834.
Full textKononenko, Igor, and Matjaž Kukar. Machine learning and data mining. Woodhead Publishing Limited, 2007. http://dx.doi.org/10.1533/9780857099440.
Full textKroese, Dirk P., Zdravko I. Botev, Thomas Taimre, and Radislav Vaisman. Data Science and Machine Learning. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780367816971.
Full textMachine learning, neural and statistical classification. New York: Ellis Horwood, 1994.
Find full textMachine learning, neural and statistical classification. Englewood Cliffs, N.J: Prentice Hall, 1994.
Find full textBilokon, Paul Alexander. Python, Data Science and Machine Learning. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/11701.
Full textBhattacharyya, Siddhartha, Hrishikesh Bhaumik, Anirban Mukherjee, and Sourav De, eds. Machine Learning for Big Data Analysis. De Gruyter, 2019. http://dx.doi.org/10.1515/9783110551433.
Full textRatner, Bruce, Stephen Day, and Christopher Davies. Statistical and Machine-Learning Data Mining. CRC Press, 2011. http://dx.doi.org/10.1201/b11508.
Full textBhattacharyya, Siddhartha, Sourav De, Anirban Mukherjee, and Hrishikesh Bhaumik. Machine Learning for Big Data Analyis. De Gruyter, Inc., 2018.
Find full text