Academic literature on the topic 'Data distribution shift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data distribution shift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data distribution shift"
Cheng, Luling, Xue Yang, Luliang Tang, et al. "Spatiotemporal Analysis of Taxi-Driver Shifts Using Big Trace Data." ISPRS International Journal of Geo-Information 9, no. 4 (2020): 281. http://dx.doi.org/10.3390/ijgi9040281.
Full textIslind, Anna Sigridur, Tomas Lindroth, Johan Lundin, and Gunnar Steineck. "Shift in translations: Data work with patient-generated health data in clinical practice." Health Informatics Journal 25, no. 3 (2019): 577–86. http://dx.doi.org/10.1177/1460458219833097.
Full textSharet, Nir, and Ilan Shimshoni. "Analyzing Data Changes using Mean Shift Clustering." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 07 (2016): 1650016. http://dx.doi.org/10.1142/s0218001416500166.
Full textTyagi, Dushyant. "Designing an Effective Combined Shewhart-CUSUM Control Scheme with Exponentially Distributed Data." International Journal of Mathematical, Engineering and Management Sciences 4, no. 5 (2019): 1277–86. http://dx.doi.org/10.33889/ijmems.2019.4.5-101.
Full textKuang, Kun, Hengtao Zhang, Runze Wu, Fei Wu, Yueting Zhuang, and Aijun Zhang. "Balance-Subsampled Stable Prediction Across Unknown Test Data." ACM Transactions on Knowledge Discovery from Data 16, no. 3 (2022): 1–21. http://dx.doi.org/10.1145/3477052.
Full textLee, Giwoong, Jiseung Ahn, and Jeongyeol Choe. "HYBOOD: A Hybrid Generative Model for Out-of-Distribution Detection with Corruption Estimation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 17 (2025): 18101–9. https://doi.org/10.1609/aaai.v39i17.33991.
Full textWang, Da, Lin Li, Wei Wei, Qixian Yu, Jianye Hao, and Jiye Liang. "Improving Generalization in Offline Reinforcement Learning via Latent Distribution Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 20 (2025): 21053–61. https://doi.org/10.1609/aaai.v39i20.35402.
Full textYe, Nanyang, Lin Zhu, Jia Wang, et al. "Certifiable Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10927–35. http://dx.doi.org/10.1609/aaai.v37i9.26295.
Full textRezaei, Ashkan, Anqi Liu, Omid Memarrast, and Brian D. Ziebart. "Robust Fairness Under Covariate Shift." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (2021): 9419–27. http://dx.doi.org/10.1609/aaai.v35i11.17135.
Full textLone, Showkat Ahmad, Zahid Rasheed, Sadia Anwar, Majid Khan, Syed Masroor Anwar, and Sana Shahab. "Enhanced fault detection models with real-life applications." AIMS Mathematics 8, no. 8 (2023): 19595–636. http://dx.doi.org/10.3934/math.20231000.
Full textDissertations / Theses on the topic "Data distribution shift"
Dadalto, Câmara Gomes Eduardo. "Improving artificial intelligence reliability through out-of-distribution and misclassification detection." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG018.
Full textLowry, Sonia L. "Analysis of statnamic load test data using a load shed distribution model." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001238.
Full textBickel, Steffen. "Learning under differing training and test distributions." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/3333/.
Full textAbecidan, Rony. "Stratégies d'apprentissage robustes pour la détection de manipulation d'images." Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0025.
Full textNeubert, Karin. "Das nichtparametrische Behrens-Fisher-Problem: ein studentisierter Permutationstest und robuste Konfidenzintervalle für den Shift-Effekt." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-000D-F21D-C.
Full textBooks on the topic "Data distribution shift"
Berg, John C. Leave It in the Ground. ABC-CLIO, LLC, 2019. http://dx.doi.org/10.5040/9798400677960.
Full textRay, Ranjan. The Link between Preferences, Prices, Inequality, and Poverty. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198812555.003.0007.
Full textBallon, Paola, and Jorge Dávalos. Inequality and the changing nature of work in Peru. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/925-9.
Full textGaiha, Raghav, Raghbendra Jha, Vani S. Kulkarni, and Nidhi Kaicker. Diets, Nutrition, and Poverty. Edited by Ronald J. Herring. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780195397772.013.029.
Full textFleury, James, Bryan Hikari Hartzheim, and Stephen Mamber, eds. The Franchise Era. Edinburgh University Press, 2019. http://dx.doi.org/10.3366/edinburgh/9781474419222.001.0001.
Full textFrenneaux, Richard. Music Industry in the Digital Age. Bloomsbury Publishing Plc, 2025. https://doi.org/10.5040/9798765113486.
Full textBook chapters on the topic "Data distribution shift"
Oza, Poojan, Hien V. Nguyen, and Vishal M. Patel. "Multiple Class Novelty Detection Under Data Distribution Shift." In Computer Vision – ECCV 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58571-6_26.
Full textDiet, Fabian, Moussa Kassem Sbeyti, and Michelle Karg. "Prediction Accuracy & Reliability: Classification and Object Localization Under Distribution Shift." In Studies in Big Data. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66842-5_9.
Full textSvensson, Emma, Hannah Rosa Friesacher, Adam Arany, Lewis Mervin, and Ola Engkvist. "Temporal Evaluation of Uncertainty Quantification Under Distribution Shift." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72381-0_11.
Full textThimonier, Hugo, Fabrice Popineau, Arpad Rimmel, Bich-Liên Doan, and Fabrice Daniel. "Comparative Evaluation of Anomaly Detection Methods for Fraud Detection in Online Credit Card Payments." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4581-4_4.
Full textAshmore, Rob, and Matthew Hill. "“Boxing Clever”: Practical Techniques for Gaining Insights into Training Data and Monitoring Distribution Shift." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99229-7_33.
Full textStade, Dawid, and Martin Manns. "Robotic Assembly Line Balancing with Multimodal Stochastic Processing Times." In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_8.
Full textKozar, Anastasiia, Janis von Bleichert, Sebastian Breß, et al. "Query Processing on Heterogeneous Hardware." In Scalable Data Management for Future Hardware. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74097-8_2.
Full textZhang, Yedi, Guangke Chen, Fu Song, Jun Sun, and Jin Song Dong. "Certified Quantization Strategy Synthesis for Neural Networks." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71162-6_18.
Full textDasu, Tamraparni, Shankar Krishnan, Dongyu Lin, Suresh Venkatasubramanian, and Kevin Yi. "Change (Detection) You Can Believe in: Finding Distributional Shifts in Data Streams." In Advances in Intelligent Data Analysis VIII. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03915-7_3.
Full textZhenchenko, Maryna. "Transformation of Public Policy in Ukrainian Book Publishing as a Basis for Resisting Russian Cultural Expansion During and After the War." In Contributions to Security and Defence Studies. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66434-2_12.
Full textConference papers on the topic "Data distribution shift"
Chen, Sisi, Weijie Liu, Xiaoxi Zhang, Hong Xu, Wanyu Lin, and Xu Chen. "Adaptive Personalized Federated Learning for Non-IID Data with Continual Distribution Shift." In 2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS). IEEE, 2024. http://dx.doi.org/10.1109/iwqos61813.2024.10682851.
Full textPang, Junjie, Haohua Du, Zhiyi Liu, Xiaoya Xu, and YuanHao Feng. "FedDCS: Dynamical Client Selection for Federated Learning in Mobile Scenarios with Label Distribution Shift." In 2024 10th International Conference on Big Data Computing and Communications (BigCom). IEEE, 2024. https://doi.org/10.1109/bigcom65357.2024.00023.
Full textTeng, Yao Long, Htet Naing, and Wentong Cai. "Integrating Data and Rules: A Hybrid Approach for Robust Lane Change Intention Prediction Under Distribution Shift." In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2024. https://doi.org/10.1109/itsc58415.2024.10919738.
Full textYichuan, Shi, Olivera Kotevska, Viktor Reshniak, and Amir Sadovnik. "Assessing Membership Inference Attacks under Distribution Shifts." In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825580.
Full textKim, Min-Seon, Ling Liu, and Hyuk-Yoon Kwon. "OL4TeX: Adaptive Online Learning for Text Classification under Distribution Shifts." In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10826003.
Full textWang, Yuzheng, Dingkang Yang, Zhaoyu Chen, et al. "De-Confounded Data-Free Knowledge Distillation for Handling Distribution Shifts." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01199.
Full textZhu, Yichen, Jian Yuan, Bo Jiang, et al. "Prediction with Incomplete Data under Agnostic Mask Distribution Shift." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/525.
Full textXie, Hui, Xuanxuan Liu, and Li Guo. "Semi-supervised One-pass Learning under Distribution Shift." In ICBDT 2023: 2023 6th International Conference on Big Data Technologies. ACM, 2023. http://dx.doi.org/10.1145/3627377.3627446.
Full textHu, Xuanming, Wei Fan, Kun Yi, et al. "Boosting Urban Prediction via Addressing Spatial-Temporal Distribution Shift." In 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023. http://dx.doi.org/10.1109/icdm58522.2023.00025.
Full textLi, Juren, Yang Yang, Youmin Chen, Jianfeng Zhang, Zeyu Lai, and Lujia Pan. "DWLR: Domain Adaptation under Label Shift for Wearable Sensor." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/489.
Full textReports on the topic "Data distribution shift"
Dubeck, Margaret M., Jonathan M. B. Stern, and Rehemah Nabacwa. Learning to Read in a Local Language in Uganda: Creating Learner Profiles to Track Progress and Guide Instruction Using Early Grade Reading Assessment Results. RTI Press, 2021. http://dx.doi.org/10.3768/rtipress.2021.op.0068.2106.
Full textCollins, Kimberly, Raffi Der Wartanian, Francisca Beer, and Yunfei Hou. Moving Towards the Electrification of Medium- and Heavy-Duty Vehicles in the Inland Empire. Mineta Transportation Institute, 2024. http://dx.doi.org/10.31979/mti.2024.2305.1.
Full textMaupin, Julie, and Dr Michael Mamoun. DTPH56-06-T-0004 Plastic Pipe Failure, Risk, and Threat Analysis. Pipeline Research Council International, Inc. (PRCI), 2006. http://dx.doi.org/10.55274/r0012119.
Full textGómez, Camilo, Carlos Andrés Quicazán-Moreno, and Hernando Vargas-Herrera. Changes in the distribution of new loans by risk category throughout the post-pandemic credit cycle in Colombia. Banco de la República, 2025. https://doi.org/10.32468/be.1313.
Full textAterido, Reyes, Mary Hallward-Driemeier, and Carmen Pagés. Investment Climate and Employment Growth: The Impact of Access to Finance, Corruption and Regulations across Firms. Inter-American Development Bank, 2007. http://dx.doi.org/10.18235/0011259.
Full textChan, Melvin Chee Yeen, and Jennifer Pei-Ling Tan. Secondary quantitative analysis of core research data (2004-2010): A multilevel study of academic achievement and 21st century competencies. National Institute of Education, Nanyang Technological University, Singapore, 2020. https://doi.org/10.32658/10497/22604.
Full textBaruah, Bipasha, Ann Kingiri, Daniel Musyoka, et al. Powering Change: The Critical Role of Women and Youth in Sustainable Energy Transformation. Institute of Development Studies, 2025. https://doi.org/10.19088/cedca.2025.001.
Full textPasupuleti, Murali Krishna. Phase Transitions in High-Dimensional Learning: Understanding the Scaling Limits of Efficient Algorithms. National Education Services, 2025. https://doi.org/10.62311/nesx/rr1125.
Full textSalavisa, Isabel, Mark Soares, and Sofia Bizarro. A Critical Assessment of Organic Agriculture in Portugal: A reflection on the agro-food system transition. DINÂMIA'CET-Iscte, 2021. http://dx.doi.org/10.15847/dinamiacet-iul.wp.2021.05.
Full textShapovalova, Daria, Tavis Potts, John Bone, and Keith Bender. Measuring Just Transition : Indicators and scenarios for a Just Transition in Aberdeen and Aberdeenshire. University of Aberdeen, 2023. http://dx.doi.org/10.57064/2164/22364.
Full text