Academic literature on the topic 'Data filtering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data filtering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data filtering"
Павло Б. Олійник. "DATA FILTERING METHODS FOR HYDROGRAPHIC SURVEY DATA." MECHANICS OF GYROSCOPIC SYSTEMS, no. 27 (October 6, 2014): 10–18. http://dx.doi.org/10.20535/0203-377127201437908.
Full textIske, Armin. "Progressive scattered data filtering." Journal of Computational and Applied Mathematics 158, no. 2 (September 2003): 297–316. http://dx.doi.org/10.1016/s0377-0427(03)00449-7.
Full textGdanskiy, N. I., А. М. Кarpov, and P. Y. Коmova. "Using prediction in filtering data for solving model tasks." Contemporary problems of social work 1, no. 2 (June 30, 2015): 81–91. http://dx.doi.org/10.17922/2412-5466-2015-1-2-81-91.
Full textKim, DaeYoub. "A Study on Fake Data Filtering Method of CCN." Journal of the Korea Institute of Information Security and Cryptology 24, no. 1 (February 28, 2014): 155–63. http://dx.doi.org/10.13089/jkiisc.2014.24.1.155.
Full textXiaohui, Cheng, Feng Li, and Gui Qiong. "Collaborative Filtering Algorithm based on Data Mixing and Filtering." International Journal of Performability Engineering 15, no. 8 (2019): 2267. http://dx.doi.org/10.23940/ijpe.19.08.p27.22672276.
Full textKamaludin, Hazalila, Hairulnizam Mahdin, and Jemal H. Abawajy. "Filtering Redundant Data from RFID Data Streams." Journal of Sensors 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7107914.
Full textLi, Jianchao, and Ken Larner. "Differential‐equation‐based seismic data filtering." GEOPHYSICS 58, no. 12 (December 1993): 1809–19. http://dx.doi.org/10.1190/1.1443396.
Full textBurguera, Antoni, Yolanda González, and Gabriel Oliver. "PROBABILISTIC FILTERING OF SONAR DATA." IFAC Proceedings Volumes 40, no. 15 (2007): 49–54. http://dx.doi.org/10.3182/20070903-3-fr-2921.00011.
Full textGrzesiak, M. "Wavelet filtering of chaotic data." Nonlinear Processes in Geophysics 7, no. 1/2 (June 30, 2000): 111–16. http://dx.doi.org/10.5194/npg-7-111-2000.
Full textElliott, P. J. "Digital Filtering of Sirotem Data." Exploration Geophysics 19, no. 1-2 (March 1988): 258–59. http://dx.doi.org/10.1071/eg988258.
Full textDissertations / Theses on the topic "Data filtering"
Faber, Marc. "On-Board Data Processing and Filtering." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596433.
Full textOne of the requirements resulting from mounting pressure on flight test schedules is the reduction of time needed for data analysis, in pursuit of shorter test cycles. This requirement has ramifications such as the demand for record and processing of not just raw measurement data but also of data converted to engineering units in real time, as well as for an optimized use of the bandwidth available for telemetry downlink and ultimately for shortening the duration of procedures intended to disseminate pre-selected recorded data among different analysis groups on ground. A promising way to successfully address these needs consists in implementing more CPU-intelligence and processing power directly on the on-board flight test equipment. This provides the ability to process complex data in real time. For instance, data acquired at different hardware interfaces (which may be compliant with different standards) can be directly converted to more easy-to-handle engineering units. This leads to a faster extraction and analysis of the actual data contents of the on-board signals and busses. Another central goal is the efficient use of the available bandwidth for telemetry. Real-time data reduction via intelligent filtering is one approach to achieve this challenging objective. The data filtering process should be performed simultaneously on an all-data-capture recording and the user should be able to easily select the interesting data without building PCM formats on board nor to carry out decommutation on ground. This data selection should be as easy as possible for the user, and the on-board FTI devices should generate a seamless and transparent data transmission, making a quick data analysis viable. On-board data processing and filtering has the potential to become the future main path to handle the challenge of FTI data acquisition and analysis in a more comfortable and effective way.
Zhou, Yilun S. M. Massachusetts Institute of Technology. "Data-driven path filtering in ConceptNet." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122731.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 49-52).
In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, meaning that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this thesis I instead propose to learn to predict path quality from crowdsourced human assessments. Since a generic task-independent notion of quality is concerned, human participants are asked to rank paths according to their subjective assessment of the paths' naturalness, without being given specific definitions or guidelines. Experiments show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths in various applications.
by Yilun Zhou.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Cirkic, Mirsad. "Modular General-Purpose Data Filtering for Tracking." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14917.
Full textIn nearly allmodern tracking systems, signal processing is an important part with state estimation as the fundamental component. To evaluate and to reassess different tracking systems in an affordable way, simulations that are in accordance with reality are largely used. Simulation software that is composed of many different simulating modules, such as high level architecture (HLA) standardized software, is capable of simulating very realistic data and scenarios.
A modular and general-purpose state estimation functionality for filtering provides a profound basis for simulating most modern tracking systems, which in this thesis work is precisely what is created and implemented in an HLA-framework. Some of the most widely used estimators, the iterated Schmidt extended Kalman filter, the scaled unscented Kalman filter, and the particle filter, are chosen to form a toolbox of such functionality. An indeed expandable toolbox that offers both unique and general features of each respective filter is designed and implemented, which can be utilized in not only tracking applications but in any application that is in need of fundamental state estimation. In order to prepare the user to make full use of this toolbox, the filters’ methods are described thoroughly, some of which are modified with adjustments that have been discovered in the process.
Furthermore, to utilize these filters easily for the sake of user-friendliness, a linear algebraic shell is created, which has very straight-forward matrix handling and uses BOOST UBLAS as the underlying numerical library. It is used for the implementation of the filters in C++, which provides a very independent and portable code.
Torgrimsson, Jan. "Adaptive filtering of VLF data from space." Thesis, KTH, Rymd- och plasmafysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91544.
Full textČirkić, Mirsad. "Modular General-Purpose Data Filtering for Tracking." Thesis, Linköpings universitet, Institutionen för systemteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14917.
Full textOlsson, Jakob, and Viktor Yberg. "Log data filtering in embedded sensor devices." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175367.
Full textDatafiltrering är att ta bort onödig data i en datamängd, för att spara resurser såsom serverkapacitet och bandbredd. Metoden används för att minska mängden lagrad data och därmed förhindra att värdefulla resurser används för att bearbeta obetydlig information. Syftet med denna tes är att hitta algoritmer för datafiltrering och att undersöka vilken algoritm som ger bäst resultat i inbyggda system med resursbegränsningar. Det innebär att algoritmen bör vara resurseffektiv vad gäller minnesanvändning och prestanda, men spara tillräckligt många datapunkter för att inte modifiera eller förlora information. Efter att en algoritm har hittats kommer den även att implementeras för att passa Exqbe-systemet. Studien är genomförd genom att studera tidigare gjorda studier om datafiltreringsalgoritmer och dess applikationer. Jämförelser mellan flera välkända algoritmer har utförts för att hitta vilken som passar denna tes bäst. Jämförelsen mellan de olika filtreringsalgoritmerna resulterade i en implementation av en utökad version av Ramer-Douglas-Peucker-algoritmen. Algoritmen har optimerats och ett nytt filter har implementerats utöver algoritmen.
Chilo, José. "Filtering and extracting features from infrasound data /." Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3978.
Full textKarasalo, Maja. "Data Filtering and Control Design for Mobile Robots." Doctoral thesis, KTH, Optimeringslära och systemteori, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11011.
Full textQC 20100722
Walter, Patrick L. "FILTERING CONSIDERATIONS WHEN TELEMETERING SHOCK AND VIBRATION DATA." International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/607681.
Full textThe accurate measurement of shock and vibration data via flight telemetry is necessary to validate structural models, indicate off-nominal system performance, and/or generate environmental qualification criteria for airborne systems. Digital telemetry systems require anti-aliasing filters designed into them. If not properly selected and located, these filters can distort recorded time histories and modify their spectral content. This paper provides filter design guidance to optimize the quality of recorded flight structural dynamics data. It is based on the anticipated end use of the data. Examples of filtered shock data are included.
Wunnava, Sashi Prabha. "Kalman Filtering Approach to Optimize OFDM Data Rate." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84303/.
Full textBooks on the topic "Data filtering"
Abramowicz, Witold, Paweł Kalczyński, and Krzysztof Węcel. Filtering the Web to Feed Data Warehouses. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0137-6.
Full textAbramowicz, Witold. Filtering the Web to Feed Data Warehouses. London: Springer London, 2002.
Find full textBrenner, Marty. Nonstationary dynamics data analysis with wavelet-SVD filtering. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 2001.
Find full textStinson, Catherine Elizabeth. Adaptive information filtering with labelled and unlabelled data. Ottawa: National Library of Canada, 2002.
Find full textConsens, Mariano P. Creating and filtering structural data visualizations using hygraph patterns. Toronto: Computer Systems Research Institute, University of Toronto, 1994.
Find full textMaskey, Liam. Digital filtering of sigma-delta modulator data using FPGA's. (s.l: The Author), 2000.
Find full textOceans, Canada Dept of Fisheries and. Efficient Frequency Domain Filtering Algorithm For Small Data Sets. S.l: s.n, 1987.
Find full textChui, C. K. Kalman filtering: With real-time applications. 3rd ed. Berlin: Springer, 1999.
Find full textG, Chen, ed. Kalman filtering: With real-time applications. 2nd ed. Berlin: Springer-Verlag, 1991.
Find full textG, Chen, ed. Kalman filtering: With real-time applications. Berlin: Springer-Verlag, 1987.
Find full textBook chapters on the topic "Data filtering"
Aspin, Adam. "Filtering Data." In Pro Power BI Desktop, 401–27. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1805-1_13.
Full textAspin, Adam. "Filtering Data." In Pro Power BI Desktop, 737–78. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5763-0_21.
Full textAspin, Adam. "Filtering Data." In Pro Power BI Desktop, 611–41. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3210-1_20.
Full textAspin, Adam. "Filtering Data." In Pro Power BI Dashboard Creation, 307–49. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8227-4_13.
Full textHaslwanter, Thomas. "Data Filtering." In Hands-on Signal Analysis with Python, 71–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57903-6_5.
Full textKovanic, Pavel. "Data Filtering." In Mathematical Gnostics, 235–42. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429441196-20.
Full textDiniz, Paulo S. R. "Data-Selective Adaptive Filtering." In Adaptive Filtering, 249–304. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-4106-9_6.
Full textDiniz, Paulo S. R. "Data-Selective Adaptive Filtering." In Adaptive Filtering, 1–57. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68606-6_6.
Full textAlthbiti, Ashrf, and Xiaogang Ma. "Collaborative Filtering." In Encyclopedia of Big Data, 179–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-32010-6_274.
Full textAlthbiti, Ashrf, and Xiaogang Ma. "Collaborative Filtering." In Encyclopedia of Big Data, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32001-4_274-1.
Full textConference papers on the topic "Data filtering"
Ditta, Marilena, Fabrizio Milazzo, Valentina Ravì, Giovanni Pilato, and Agnese Augello. "Data-driven Relation Discovery from Unstructured Texts." In Special Session on Information Filtering and Retrieval. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005614205970602.
Full textJohnson, Alister. "Scaling Collaborative Filtering with PETSc." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622202.
Full textYang, Xiaochun, Yaoshu Wang, Bin Wang, and Wei Wang. "Local Filtering." In SIGMOD/PODS'15: International Conference on Management of Data. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2723372.2749445.
Full textLi, Jun, Wenyu Zang, Jianlong Tan, and Peng Zhang. "Predictive Data Stream Filtering." In 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE, 2011. http://dx.doi.org/10.1109/wi-iat.2011.95.
Full textXia, Shuyin, Guoyin Wang, Yunsheng Liur, Qun Liu, and Hong Yu. "Noise self-filtering K-nearest neighbors algorithms." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258130.
Full textWalker, Edwin P., and Tomas D. Milster. "Superresolution by optical and electronic filtering." In Optical Data Storage '95, edited by Gordon R. Knight, Hiroshi Ooki, and Yuan-Sheng Tyan. SPIE, 1995. http://dx.doi.org/10.1117/12.218711.
Full textLi, Xiaohan, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and Philip S. Yu. "Dynamic Graph Collaborative Filtering." In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00041.
Full textEsche, Marko, Michael Tok, and Thomas Sikora. "Theoretical Considerations Concerning Pixelwise Temporal Filtering." In 2014 Data Compression Conference (DCC). IEEE, 2014. http://dx.doi.org/10.1109/dcc.2014.20.
Full textMoorman, Jacob D., Qinyi Chen, Thomas K. Tu, Zachary M. Boyd, and Andrea L. Bertozzi. "Filtering Methods for Subgraph Matching on Multiplex Networks." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622566.
Full textZiffer, Giacomo, Alessio Bernardo, Emanuele Della Valle, and Albert Bifet. "Kalman Filtering for Learning with Evolving Data Streams." In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671365.
Full textReports on the topic "Data filtering"
Wilson, Michael J. Combining and Filtering Telemetry Data. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada421434.
Full textMcNabb, J. Kaon Filtering For CLAS Data. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/774088.
Full textLi, Jianchao, and K. Larner. Differential equation-based seismic data filtering. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/10159092.
Full textLi, Jianchao, and K. Larner. Differential equation-based seismic data filtering. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/7235596.
Full textPados, Dimitiris A. Adaptive Digital Signature Design and Short-Data-Record Adaptive Filtering. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada481007.
Full textMathew, Jijo K., Christopher M. Day, Howell Li, and Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Full textYoung, Teresa. Using Digital Filtering Techniques as an Aid in Wind Turbine Data Analysis. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10113493.
Full textChurch, I., A. Greer, L. Quas, and M. Williamson. Multibeam water column filtering methods to improve data management and bio-acoustic interpretation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305839.
Full textBoffo, C., and P. Bauer. FIONDA (Filtering Images of Niobium Disks Application): Filter application for Eddy Current Scanner data analysis. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/15020167.
Full textEzekiel, Shaoul, and Selim Shahriar. Applications of Porous Glass Based Thick Holograms for Optical Data Storage and Narrow-Band Wave Length Filtering. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada406505.
Full text