Dissertations / Theses on the topic 'Data Governance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Data Governance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Blahová, Leontýna. "Big Data Governance." Master's thesis, Vysoká škola ekonomická v Praze, 2016. http://www.nusl.cz/ntk/nusl-203994.
Full textSlouková, Anna. "Postup zavádění Data Governance." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-10498.
Full textReken, Jaroslav. "Role v Data Governance." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-19114.
Full textZosinčuk, Dominik. "Zavádění projektu data governance." Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-197446.
Full textUllrichová, Jana. "Koncept zavedení Data Governance." Master's thesis, Vysoká škola ekonomická v Praze, 2016. http://www.nusl.cz/ntk/nusl-203901.
Full textDeStefano, R. J. "Improving Enterprise Data Governance Through Ontology and Linked Data." Thesis, Pace University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10097925.
Full textIn the past decade, the role of data has increased exponentially from being the output of a process, to becoming a true corporate asset. As the business landscape becomes increasingly complex and the pace of change increasingly faster, companies need a clear awareness of their data assets, their movement, and how they relate to the organization in order to make informed decisions, reduce cost, and identify opportunity. The increased complexity of corporate technology has also created a high level of risk, as the data moving across a multitude of systems lends itself to a higher likelihood of impacting dependent processes and systems, should something go wrong or be changed. The result of this increased difficulty in managing corporate data assets is poor enterprise data quality, the impacts of which, range in the billions of dollars of waste and lost opportunity to businesses.
Tools and processes exist to help companies manage this phenomena, however often times, data projects are subject to high amounts of scrutiny as senior leadership struggles to identify return on investment. While there are many tools and methods to increase a companies’ ability to govern data, this research stands by the fact that you can’t govern that which you don’t know. This lack of awareness of the corporate data landscape impacts the ability to govern data, which in turn impacts overall data quality within organizations.
This research seeks to propose a means for companies to better model the landscape of their data, processes, and organizational attributes through the use of linked data, via the Resource Description Framework (RDF) and ontology. The outcome of adopting such techniques is an increased level of data awareness within the organization, resulting in improved ability to govern corporate data assets. It does this by primarily addressing corporate leadership’s low tolerance for taking on large scale data centric projects. The nature of linked data, with it’s incremental and de-centralized approach to storing information, combined with a rich ecosystem of open source or low cost tools reduces the financial barriers to entry regarding these initiatives. Additionally, linked data’s distributed nature and flexible structure help foster maximum participation throughout the enterprise to assist in capturing information regarding data assets. This increased participation aids in increasing the quality of the information captured by empowering more of the individuals who handle the data to contribute.
Ontology, in conjunction with linked data, provides an incredibly powerful means to model the complex relationships between an organization, its people, processes, and technology assets. When combined with the graph based nature of RDF the model lends itself to presenting concepts such as data lineage to allow an organization to see the true reach of it’s data. This research further proposes an ontology that is based on data governance standards, visualization examples and queries against data to simulate common data governance situations, as well as guidelines to assist in its implementation in a enterprise setting.
The result of adopting such techniques will allow for an enterprise to accurately reflect the data assets, stewardship information and integration points that are so necessary to institute effective data governance.
Barker, James M. "Data governance| The missing approach to improving data quality." Thesis, University of Phoenix, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10248424.
Full textIn an environment where individuals use applications to drive activities from what book to purchase, what film to view, to what temperature to heat a home, data is the critical element. To make things work data must be correct, complete, and accurate. Many firms view data governance as a panacea to the ills of systems and organizational challenge while other firms struggle to generate the value of these programs. This paper documents a study that was executed to understand what is being done by firms in the data governance space and why? The conceptual framework that was established from the literature on the subject was a set of six areas that should be addressed for a data governance program including: data governance councils; data quality; master data management; data security; policies and procedures; and data architecture. There is a wide range of experiences and ways to address data quality and the focus needs to be on execution. This explanatory case study examined the experiences of 100 professionals at 41 firms to understand what is being done and why professionals are undertaking such an endeavor. The outcome is that firms need to address data quality, data security, and operational standards in a manner that is organized around business value including strong business leader sponsorship and a documented dynamic business case. The outcome of this study provides a foundation for data governance program success and a guide to getting started.
Furlan, Patrícia Kuzmenko. "Fatores determinantes para a adoção das governanças de dados e de informação no ambiente big data." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-24092018-081250/.
Full textIn the big data environment, organizations are concerned with extracting value from data and information in order to acquire competitive advantage. However, organizational efforts are required to organize data assets, determine responsibilities with regard to the data assets, ensure data quality, and other aspects. Such activities are covered by data or information governance models. This research investigated how organizations can adopt data or information governance in the big data environment. Thus, it was conducted multi-sectoral case studies to identify determinants factors for the adopting of data or information governance in the big data environment. The research protocol encompassed elements and contents of the data or information governance models and those related to big data value extraction. It was noted that the organizational approaches regarding data or information governance are poorly consolidated, but are well known to organizations. In addition, data or information governance models are adopted by organizations with different levels of analytical capabilities. Those models include the definition of the strategic objectives, and domains like data or information quality management, data management (especially metadata), transformation of the organizational cultural in relation to the data and the information, and collaboration and communication among stakeholders. Eight determinants factor were identified for the adoption of data or information governance in the big data environment, including structural, relational and operational practices of the governance model: 1 - Large, global and diffuse organizations with decentralized business and complex portfolio of products or services; 2 - Define C-level, managers, data owners and data stewards; 3 - Establish a data committee or other means to bring together the top leaders of the organization; 4 - Engagement of the IT department on the data management activities, enabling and executing operational activities in relation to data and information among databases and information systems; 5 - Actively engage in the cultural transformation of the organization into data-driven; 6 - Promote communication and internal collaboration; develop communication on the effectiveness of policies and the need for stakeholder adequacy; 7 - Define, manage and control metadata; 8 - Define standards, requirements and control over data quality. This research provides a relevant theoretical consolidation to the field of data or information governance, contemplating a vast list of research variables on the fields of competitive intelligence, IT governance, data and information governance literatures. It was also possible to expand the data or information governance model through the addition of domains such as collaboration, communication, and cultural transformation. The research also proposes an expansion in the general conceptualization of the terms data governance and information governance.
Kmoch, Václav. "Data Governance - koncept projektu zavedení procesu." Master's thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-73648.
Full textAlfaro, Carranza Rosa Ángela, and Mendoza Libusi Deyanira Ampuero. "Modelo de madurez de Data Governance." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2015. http://hdl.handle.net/10757/347094.
Full textData Governance o gobierno de datos es un concepto en evolución que incluye las personas que tienen grandes responsabilidades dentro de organizaciones y los procesos que estas utilizan para poder gestionar la información. El presente proyecto plantea la creación de un Modelo de Madurez de Data Governance basado en el IBM Data Governance Maturity Model. El objetivo de este modelo es ayudar a las organizaciones a conocer su nivel de madurez en relación con la gestión de sus datos e identificar sus puntos débiles para posteriormente tomar medidas correctivas antes de optar por la implementación de un programa de Data Governance.
Tesis
Cave, Ashley. "Exploring Strategies for Implementing Data Governance Practices." ScholarWorks, 2017. https://scholarworks.waldenu.edu/dissertations/4206.
Full textLandelius, Cecilia. "Data governance in big data : How to improve data quality in a decentralized organization." Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301258.
Full textDen ökade användningen av internet har ökat mängden data som finns tillgänglig och mängden data som samlas in. Företag påbörjar därför initiativ för att analysera dessa stora mängder data för att få ökad förståelse. Dock är värdet av analysen samt besluten som baseras på analysen beroende av kvaliteten av den underliggande data. Av denna anledning har datakvalitet blivit en viktig fråga för företag. Misslyckanden i datakvalitetshantering är ofta på grund av organisatoriska aspekter. Eftersom decentraliserade organisationsformer blir alltmer populära, finns det ett behov av att förstå hur en decentraliserad organisation kan arbeta med frågor som datakvalitet och dess förbättring. Denna uppsats är en kvalitativ studie av ett företag inom logistikbranschen som i nuläget genomgår ett skifte till att bli datadrivna och som har problem med att underhålla sin datakvalitet. Syftet med denna uppsats är att besvara frågorna: • RQ1: Vad är datakvalitet i sammanhanget logistikdata? • RQ2: Vilka är hindren för att förbättra datakvalitet i en decentraliserad organisation? • RQ3: Hur kan dessa hinder överkommas? Flera datakvalitetsdimensioner identifierades och kategoriserades som kritiska problem, problem och icke-problem. Från den insamlade informationen fanns att dimensionerna, kompletthet, exakthet och konsekvens var kritiska datakvalitetsproblem för företaget. De tre mest förekommande hindren för att förbättra datakvalité var dataägandeskap, standardisering av data samt att förstå vikten av datakvalitet. För att överkomma dessa hinder är de viktigaste åtgärderna att skapa strukturer för dataägandeskap, att implementera praxis för hantering av datakvalitet samt att ändra attityden hos de anställda gentemot datakvalitet till en datadriven attityd. Generaliseringsbarheten av en enfallsstudie är låg. Dock medför denna studie flera viktiga insikter och trender vilka kan användas för framtida studier och för företag som genomgår liknande transformationer.
Carvalho, Mónica Isabel Machado. "Data Governance : estudo e aplicação na EDP distribuição." Master's thesis, FEUC, 2012. http://hdl.handle.net/10316/21346.
Full textRelatório de estágio do mestrado em Gestão, apresentado à Faculdade de Economia da Universidade de Coimbra, sob a orientação de Luís Alçada, Isabel Xisto.
Randhawa, Tarlochan Singh. "Incorporating Data Governance Frameworks in the Financial Industry." ScholarWorks, 2019. https://scholarworks.waldenu.edu/dissertations/6478.
Full textSchumacher, Jörg [Verfasser]. "Prozess- und Data Governance im industriellen Anlagenmanagement / Jörg Schumacher." München : Verlag Dr. Hut, 2012. http://d-nb.info/102107313X/34.
Full textStephens, Joshua J. "Data Governance Importance and Effectiveness| Health System Employee Perception." Thesis, Central Michigan University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10751061.
Full textThe focus of this study was to understand how health system employees define Data Governance (DG), how they perceive its importance and effectiveness to their role and how it may impact strategic outcomes of the organization. Having a better understanding of employee perceptions will help identify areas of education, process improvement and opportunities for more structured data governance within the healthcare industry. Additionally, understanding how employees associate each of these domains to strategic outcomes, will help inform decision-makers on how best to align the Data Governance strategy with that of the organization.
This research is intended to expand the data governance community’s knowledge about how health system employee demographics influence their perceptions of Data Governance. Very little academic research has been done to-date, which is unfortunate given the value of employee engagement to an organization’s culture juxtaposed to the intent of Data Governance to change that culture into one that fully realizes the value of its data and treats it as a corporate asset. This lack of understanding leads to two distinct problems: executive resistance toward starting a Data Governance Program due to the lack of association between organizational strategic outcomes and Data Governance, and employee, or cultural, resistance to the change Data Governance brings to employee roles and processes.
The dataset for this research was provided by a large mid-west health system’s Enterprise Data Governance Program and was collected internally through an electronic survey. A mixed methods approach was taken. The first analysis intended to see how employees varied in their understanding of the definition of data governance as represented by the Data Management Association’s DAMA Wheel. The last three research questions focused on determining which factors influence a health system employee’s perception of the importance, effectiveness, and impact Data Governance has on their role and on the organization.
Perceptions on the definition of Data Governance varied slightly for Gender, Management Role, IT Role, and Role Tenure, and the thematic analysis identified a lack of understanding of Data Governance by health system employees. Perceptions of Data Governance importance and effectiveness varied by participants’ gender, and organizational role as part of analytics, IT, and Management. In general, employees perceive a deficit of data governance to their role based on their perceptions of importance and effectiveness. Lastly, employee perceptions of the impact of Data Governance on strategic outcomes varied among participants by gender for Cost of Care and by Analytics Role for Quality of Analytics. For both Quality of Care and Patient Experience, perceptions did not vary.
Perceptions related to the impact of Data Governance on strategic outcomes found that Data Quality Management was most impactful to all four strategic outcomes included in the study: quality of care, cost of care, patient experience, and quality of analytics. Leveraging the results of this study to tailor communication, education and training, and roles and responsibilities required for a successful implementation of Data Governance in healthcare should be considered by DG practitioners and executive leadership implementing or evaluating a DG Program within a healthcare organization. Additionally, understanding employee perceptions of Data Governance and their impact to strategic outcomes will provide meaningful insight to executive leadership who have difficulty connecting the cost of Data Governance to the value realization, which is moving the organization closer to achieving the Triple Aim by benefiting from their data.
Rivera, Stephanie, Nataly Loarte, Carlos Raymundo, and Francisco Dominguez. "Data governance maturity model for micro financial organizations in Peru." SciTePress, 2017. http://hdl.handle.net/10757/656360.
Full textAssis, Celia Barbosa. "Governança da informação: viabilizadores e inibidores para adoção organizacional." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-27042018-102121/.
Full textInformation Governance (IG) is a new approach to the governance of the organizational information assets, resulting from challenges such as exponential data growth, new and more complex business rules and a more regulated and litigious competitive context. The main objective of the research was to investigate how organizational, relational and Information Technology (IT) factors can act as enablers, inhibitors or components for IG adoption in companies. Supported by a literature review, an exploratory-descriptive qualitative research was carried conducted, based on 21 case studies from Brazilian companies selected by information high intensity usage in processes, products and services. The theoretical contributions of the research are two proposed models: a Matrix for Institutional Governance Comparison, to be used for differentiating Corporate, Information, IT and Data governance; and an Enablers and Inhibitors Matrix, with factors derived from theory and case studies. Practical contributions are different views from theory, especially related to the interviewee\'s professional area, industry and company size; unpredicted factors such as lack of alignment between IT and business areas, institutional culture, technology advancements and change management. The comparison between theory and practice suggests greater polarization in factors such as data accumulation mentality, organizational practices and policies, communication between areas and users education. The research concludes that IG is a business-specific discipline, fundamental to sensemaking for company studies and support to coherent and effective organizational projects and processes.
Barata, André Montoia. "Governança de dados em organizações brasileiras: uma avaliação comparativa entre os benefícios previstos na literatura e os obtidos pelas organizações." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-28072015-215618/.
Full textThe IT Governance (ITG) has a key role in achieving the IT alignment with the business organization, empowering IT processes with business goals. Align IT with business organization is crucial, however it is also necessary to ensure the alignment of the GTI with Data Governance (DG) The DG is responsible for the control and management the organization\'s data, enabling the transformation of data into information for strategic decisions making. Have aligned DG with ITG is a better performance for organizations that need the right information in the right time for decision making. To collaborate with this alignment are the frameworks of good management practices that enable organizations implement this governance. This study aimed to identify the processes and frameworks of DG implemented in Brazilian organizations and compare the benefits achieved in the implementation with the proposed in the literature. The exploratory and qualitative study provided the realizations of case studies in three large Brazilian organizations that have implemented or are in the implementation DG process. The case studies were performed with two different views: a consultancy that implemented the DG and the organization that hired the consultancy. Data collection was conducted through interviews and content analysis techniques were applied in the data collected. As a result it was found that for organizations studied the implementation DG level was average, however the benefits degree was high. This is due to lack in DG in the organizations studied and the great improvement and benefits identified by interviewers even though with partial implementation DG.
Viljoen, Melanie. "A framework towards effective control in information security governance." Thesis, Nelson Mandela Metropolitan University, 2009. http://hdl.handle.net/10948/887.
Full textCastillo, Luis Felipe, Carlos Raymundo, and Francisco Dominguez Mateos. "Information architecture model for data governance initiatives in peruvian universities." Association for Computing Machinery, Inc, 2017. http://hdl.handle.net/10757/656361.
Full textThis current research revealed the need to design an information architecture model for Data Governance In order to reduce the gap between the Information Technology versus the Information Management. The model designed to make a balance between the need to invest in technology and the ability to manage the information that is originated from the use of those technologies, as well as to measure with greater precision the generation of IT value through the use of quality information and user satisfaction. In order to test our model we take a case of study in the Higher Education sector in Peru in order to demonstrate the successful data governance projects with this model. 1
Millar, Gary Engineering & Information Technology Australian Defence Force Academy UNSW. "The viable governance model (VGM) : a theoretical model of IT governance with a corporate setting." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/44262.
Full textMitchell, Elliot A. "Political competition and electoral competitiveness in Sub-Saharan Africa : a conceputal critique with data." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/4438.
Full textPejčoch, David. "Komplexní řízení kvality dat a informací." Doctoral thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-199303.
Full textKhalid, Shehla. "Towards Data Governance for International Dementia Care Mapping (DCM). A Study Proposing DCM Data Management through a Data Warehousing Approach." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5226.
Full textAlserafi, Ayman. "Dataset proximity mining for supporting schema matching and data lake governance." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671540.
Full textAmb l’enorme creixement de la quantitat de dades generades pels sistemes d’informació, és habitual avui en dia emmagatzemar conjunts de dades en els seus formats bruts (és a dir, sense cap pre-processament de dades ni transformacions) en dipòsits de dades a gran escala anomenats Data Lakes (DL). Aquests dipòsits emmagatzemen conjunts de dades d’àrees temàtiques heterogènies (que abasten molts temes empresarials) i amb molts esquemes diferents. Per tant, és un repte per als científics de dades que utilitzin la DL per a l’anàlisi de dades trobar conjunts de dades rellevants per a les seves tasques d’anàlisi sense cap suport ni govern de dades. L’objectiu és poder extreure metadades i informació sobre conjunts de dades emmagatzemats a la DL per donar suport al científic en trobar fonts rellevants. Aquest és l’objectiu principal d’aquesta tesi, on explorem diferents tècniques de perfilació de dades, concordança d’esquemes holístics i recomanació d’anàlisi per donar suport al científic. Proposem un nou marc basat en l’aprenentatge automatitzat supervisat per extreure automàticament metadades que descriuen conjunts de dades, incloent el càlcul de les seves similituds i coincidències de dades mitjançant tècniques de concordança d’esquemes holístics. Utilitzem les relacions extretes entre conjunts de dades per categoritzar-les automàticament per donar suport al científic del fet de trobar conjunts de dades rellevants amb la intersecció entre les seves dades. Això es fa mitjançant una nova tècnica basada en metadades anomenada mineria de proximitat que consumeix els metadades extrets mitjançant algoritmes automatitzats de mineria de dades per tal de detectar conjunts de dades relacionats i proposar-ne categories rellevants. Ens centrem en conjunts de dades plans (tabulars) organitzats com a files d’instàncies de dades i columnes d’atributs que descriuen les instàncies. El nostre marc proposat utilitza les quatre tècniques principals següents: (1) Esquema de concordança basat en instàncies per detectar ítems rellevants de dades entre conjunts de dades heterogènies, (2) Extracció de metadades de nivell de dades i mineria de proximitat per detectar conjunts de dades relacionats, (3) Extracció de metadades a nivell de atribut i mineria de proximitat per detectar conjunts de dades relacionats i, finalment, (4) Categorització de conjunts de dades automàtica mitjançant tècniques supervisades per k-Nearest-Neighbour (kNN). Posem en pràctica els nostres algorismes proposats mitjançant un prototip que mostra la viabilitat d’aquest marc. El prototip s’experimenta en un escenari DL real del món per demostrar la viabilitat, l’eficàcia i l’eficiència del nostre enfocament, de manera que hem pogut aconseguir elevades taxes de record i guanys d’eficiència alhora que millorem el consum computacional d’espai i temps mitjançant dues ordres de magnitud mitjançant el nostre es van proposar tècniques de poda anticipada i pre-filtratge en comparació amb tècniques de concordança d’esquemes basades en instàncies clàssiques. Això demostra l'efectivitat dels nostres mètodes automàtics proposats en les tasques de poda inicial i pre-filtratge per a la coincidència d'esquemes holístics i la classificació automàtica del conjunt de dades, tot demostrant també millores en l'anàlisi de dades basades en humans per a les mateixes tasques.
Avec l’énorme croissance de la quantité de données générées par les systèmes d’information, il est courant aujourd’hui de stocker des ensembles de données (datasets) dans leurs formats bruts (c’est-à-dire sans prétraitement ni transformation de données) dans des référentiels de données à grande échelle appelés Data Lakes (DL). Ces référentiels stockent des ensembles de données provenant de domaines hétérogènes (couvrant de nombreux sujets commerciaux) et avec de nombreux schémas différents. Par conséquent, il est difficile pour les data-scientists utilisant les DL pour l’analyse des données de trouver des datasets pertinents pour leurs tâches d’analyse sans aucun support ni gouvernance des données. L’objectif est de pouvoir extraire des métadonnées et des informations sur les datasets stockés dans le DL pour aider le data-scientist à trouver des sources pertinentes. Cela constitue l’objectif principal de cette thèse, où nous explorons différentes techniques de profilage de données, de correspondance holistique de schéma et de recommandation d’analyse pour soutenir le data-scientist. Nous proposons une nouvelle approche basée sur l’intelligence artificielle, spécifiquement l’apprentissage automatique supervisé, pour extraire automatiquement les métadonnées décrivant les datasets, calculer automatiquement les similitudes et les chevauchements de données entre ces ensembles en utilisant des techniques de correspondance holistique de schéma. Les relations entre datasets ainsi extraites sont utilisées pour catégoriser automatiquement les datasets, afin d’aider le data-scientist à trouver des datasets pertinents avec intersection entre leurs données. Cela est fait via une nouvelle technique basée sur les métadonnées appelée proximity mining, qui consomme les métadonnées extraites via des algorithmes de data mining automatisés afin de détecter des datasets connexes et de leur proposer des catégories pertinentes. Nous nous concentrons sur des datasets plats (tabulaires) organisés en rangées d’instances de données et en colonnes d’attributs décrivant les instances. L’approche proposée utilise les quatres principales techniques suivantes: (1) Correspondance de schéma basée sur l’instance pour détecter les éléments de données pertinents entre des datasets hétérogènes, (2) Extraction de métadonnées au niveau du dataset et proximity mining pour détecter les datasets connexes, (3) Extraction de métadonnées au niveau des attributs et proximity mining pour détecter des datasets connexes, et enfin, (4) catégorisation automatique des datasets via des techniques supervisées k-Nearest-Neighbour (kNN). Nous implémentons les algorithmes proposés via un prototype qui montre la faisabilité de cette approche. Nous appliquons ce prototype à une scénario DL du monde réel pour prouver la faisabilité, l’efficacité et l’efficience de notre approche, nous permettant d’atteindre des taux de rappel élevés et des gains d’efficacité, tout en diminuant le coût en espace et en temps de deux ordres de grandeur, via nos techniques proposées d’élagage précoce et de pré-filtrage, comparé aux techniques classiques de correspondance de schémas basées sur les instances. Cela prouve l’efficacité des méthodes automatiques proposées dans les tâches d’élagage précoce et de pré-filtrage pour la correspondance de schéma holistique et la cartegorisation automatique des datasets, tout en démontrant des améliorations par rapport à l’analyse de données basée sur l’humain pour les mêmes tâches.
Ofe, Hosea, and Carl Tinnsten. "Open Data : Attracting third party innovations." Thesis, Umeå universitet, Institutionen för informatik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-88061.
Full textRainie, Stephanie Carroll, Jennifer Lee Schultz, Eileen Briggs, Patricia Riggs, and Nancy Lynn Palmanteer-Holder. "Data as a Strategic Resource: Self-determination, Governance, and the Data Challenge for Indigenous Nations in the United States." UNIV WESTERN ONTARIO, 2017. http://hdl.handle.net/10150/624737.
Full textAl-Najjar, Basil. "Modelling capital structure, dividend policy, and corporate governance : evidence from Jordanian data." Thesis, University of the West of England, Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445110.
Full textEnder, Linda. "Data Governance in Digital Platforms : A case analysis in the building sector." Thesis, Umeå universitet, Institutionen för informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185598.
Full textSalman, Kanbar Ahmad. "Migrating and governing data in the jungle : A study of migrations and data governance in Seco Tools AB." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-253329.
Full textAmpuero, Mendoza Libusi, and Carranza Rosa Alfaro. "Modelo de madurez Tecno-organizacional para la puesta en marcha exitosa de iniciativas de Data Governance." International Institute of Informatics and Systemics, IIIS, 2017. http://hdl.handle.net/10757/622492.
Full textData management has undergone several changes over the last few years, leaving behind the days when it was necessary to convince people about the value of data in their organizations. Over the years, the volume and expense of data management have been increasing at a high rate. Today, organizations need to have strategic management that allows them to transform data collected from various sources with clear and accurate information. So, that they can dispose of it when they need it. The motivation of the present study is to generate a model of measurement of the level of organizational maturity that allows them to ensure the success of a Data Governance initiative. In this way ensure that all the information of the organization meets the demands of the business. It is for this reason that an organizational maturity model is proposed for the success of Data Governance initiatives based on 11 categories taking into consideration the analysis of the most widespread and adopted frameworks by industry (Kalido, Dataflux, etc.) in order to know the level of maturity and the steps to be taken at each of these levels. In this way ensure the success of a Data Governance initiative.
Revisión por pares
D, Vásquez, Daniel Vásquez, Romina Kukurelo, Carlos Raymundo, Francisco Dominguez, and Javier Moguerza. "Master data management maturity model for the successful of mdm initiatives in the microfinance sector in Peru." Association for Computing Machinery, 2018. http://hdl.handle.net/10757/624683.
Full textThe microfinance sector has a strategic role since they facilitate integration and development of all social classes to sustained economic growth. In this way the actual point is the exponential growth of data, resulting from transactions and operations carried out with these companies on a daily basis, becomes imminent. Appropriate management of this data is therefore necessary because, otherwise, it will result in a competitive disadvantage due to the lack of valuable and quality information for decision-making and process improvement. The Master Data Management (MDM) give a new way in the Data management, reducing the gap between the business perspectives versus the technology perspective In this regard, it is important that the organization have the ability to implement a data management model for Master Data Management. This paper proposes a Master Data management maturity model for microfinance sector, which frames a series of formal requirements and criteria providing an objective diagnosis with the aim of improving processes until entities reach desired maturity levels. This model was implemented based on the information of Peruvian microfinance organizations. Finally, after validation of the proposed model, it was evidenced that it serves as a means for identifying the maturity level to help in the successful of initiative for Master Data management projects.
Revisión por pares
Vacek, Martin. "Řízení kvality klientských dat." Master's thesis, Vysoká škola ekonomická v Praze, 2011. http://www.nusl.cz/ntk/nusl-85260.
Full textRomero, Alvaro, Antony Gonzales, and Carlos Raymundo. "Data governance reference model under the lean methodology for the implementation of successful initiatives in the Peruvian microfinance sector." Association for Computing Machinery, 2019. http://hdl.handle.net/10757/656344.
Full textMicrofinance allows the integration of all sectors for the country's economic growth. Data duplicity, invalid data and the inability to have reliable data for decision-making are generated without a formal Governance. For this reason, Data Governance is the key to enable an autonomous, productive and reliable work environment for the use of these. Although Data Governance models already exist, in most cases they don't meet the requirements of the sector, which has its own characteristics, such as the volume exponential growth, data criticality, and regulatory frameworks to which it is exposed. The purpose of this research is to design a reference model for the microfinance organizations, supported by an evaluation tool that provides a diagnosis with the objective of implementing and improving the organization processes regarding Data Governance. This model was implemented based on the information of Peru's microfinance organizations, from which a 1.72 score was diagnosed, which is encouraging for the organization, since it shows that it has defined all its plans concerning Data Governance. Finally, after the validation, it was concluded that the model serves as a medium to identify the current status of these organizations to ensure the success of the Data Governance initiatives.
Korada, Nishat. "Evaluation of the Self-Governance Developer Framework from Software Developers' Perspective." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230212.
Full textCatarino, Rodrigo Manuel Gonçalves Pereira. "Concepção de um repositório de master Data de entidades numa seguradora." Master's thesis, Instituto Superior de Economia e Gestão, 2011. http://hdl.handle.net/10400.5/10201.
Full textPara empresas do ramo financeiro como bancos e seguradoras o seu principal activo são os dados. São os dados consistentes, seguros, fidedignos e disponíveis na altura certa que vão potenciar o conhecimento e possibilitar a tomada de decisões correctas por parte do negócio. Qualquer organização possui dados sobre clientes, fornecedores, localizações, contratos, etc chamados de Master Data, que são críticos para o funcionamento dos principais processos de negócio. Quando numa companhia de seguros estes dados estão espalhados por vários sistemas, existindo várias cópias diferentes, e sem qualidade, do mesmo objecto de negócio então a organização não conseguirá competir adequadamente num mercado tão maduro e regulamentado. Este trabalho procura explanar os conceitos base do processo, ferramentas, métodos e tecnologias envolvidas na aquisição, correcção, integração, manutenção, controlo e partilha de Master Data (Master Data Management), e enquadrar a sua necessidade no mercado segurador e a aplicação prática numa organização particular através da metodologia de Action Research.
In financial companies like insurance and bancs their main asset is their data. Consistent, secure, accurate, accessible and timely data lead to knowledge and enabling the business to make the most correct decisions. Any organization has data about their clients, suppliers, localizations, accounts, etc also known as Master Data, which are critical to their business process. When an insurance company has his data spread out over multiple systems, having multiple different copies of the same data, without quality, of the same business object, then the organization will not be able to compete effectively in such a mature and regulated market. This work intents to detail the basic of concepts of the process, tools, method and technology involved in the acquisition, correction, integration, maintenance, control and sharing of Master Data (Master Data Management). Is also an objective of the paper to detail the need of Master Data Management in the insurance industry and the practical implementation in a particular company through an Action Research.
Schumacher, Jörg Christian [Verfasser], and W. [Akademischer Betreuer] Stucky. "Prozess- und Data-Governance im industriellen Anlagenmanagement / Jörg Christian Schumacher. Betreuer: W. Stucky." Karlsruhe : KIT-Bibliothek, 2011. http://d-nb.info/1018232540/34.
Full textSapienza, Salvatore <1993>. "Ethical Perspectives on Big Data in Agri-food: Ownership and Governance for Safety." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9590/1/Ethical%20Perspectives%20on%20Big%20Data%20in%20Agri-food__Ownership%20and%20Governance%20for%20Safety%20-%20Sapienza%20S.pdf.
Full textCoertze, Jacques Jacobus. "A framework for information security governance in SMMEs." Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1014083.
Full textGamero, Alex, Jose Garcia, and Carlos Raymundo. "Reference Model with a Lean Approach of Master Data Management in the Peruvian Microfinance Sector." Institute of Electrical and Electronics Engineers Inc, 2019. http://hdl.handle.net/10757/656347.
Full textMicrofinance has undergone a great growth in the last years, bringing consequently the significant increase of the data of the transactions and daily operations, manual processes of cleaning, complexity in IT projects and, in comparison with the traditional bank, a less amount of resources. For this reason, the model must allow the master data to have maintenance processes that reduce manual cleaning activities and contribute to the implementation of technology projects in an agile manner. On the other hand, the research seeks to combine a basic pillar such as Master Data Management (MDM) for the analysis of information with the lean approach, already used in the industry for the operational cost and additionally an evaluation measure prior to this process obtaining the state of the capabilities in the organization. In this way, the result will be that the organization can be previously evaluated and quickly identify which points should be improved to achieve the implementation of MDM initiatives. Likewise, within the research it is concluded that the Peruvian microfinance sector is prepared for the implementation of master data management with a 'proactive' maturity level of 3.46 points.
Principini, Gianluca. "Data Mesh: decentralizzare l'ownership dei dati mantenendo una governance centralizzata attraverso l'adozione di standard di processo e di interoperabilità." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textNdamase, Zimasa. "The impact of data governance on corporate performance : the case of a petroleum company." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13323.
Full textWhile it is acknowledged that data is a valuable corporate asset, many companies fail to exploit it in order to better their performance. Organizations today need to be proactive in their operations and have to make informed business decisions in less time than ever before. This puts pressure on the organisations to better govern the use of data within an organization. Literature has shown that a holistic conceptualization of factors affecting data governance is missing. Also there is limited research on the effects of data governance on firm performance. This study therefore seeks to fill this gap by investigating the factors that affect data governance in organization X which operates in the petroleum industry and also determine the extent to which the quality of data governance influences its corporate performance. A conceptual model derived from the literature review was used to guide this study. Data was collected from 50 employees in organisation X whose job descriptions are aligned with data management via an intranet web based survey. Quantitative methods were then used to analyse the data. Results of the regression analysis confirmed four out of six research propositions made. Compliance with data policies and regulations, data stewardship and ownership were not found to be significant predictors of data governance. However, data modeling, data integration and data quality are necessary in order to achieve improved data governance. The present study also confirms that poor data governance has a negative impact on corporate performance suggesting that organisation X needs to enhance the quality of data governance in order to realise its full business value and also improved business performance.
Siachiwena, Hangala. "Governance and socioeconomic development in Zambia : an analysis of survey data and development indicators." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13006.
Full textThis study set out to establish statistical relationships between matters relating to governance and changes in Zambia’s socioeconomic development. With the aid of survey data compiled by the World Bank’s Worldwide Governance Indicators, and perceptions of governance amongst Zambian citizens obtained from Round 5 of the Afrobarometer survey, this study used quantitative research methods to investigate the performance of indicators of governance in Zambia between 1996 and 2012 and the perceptions that Zambians had toward matters relating to governance. The indicators and perceptions of governance were based on measures of Control of Corruption, Government Effectiveness, Rule of Law and Voice and Accountability. The study further addressed the changes in Zambia’s socioeconomic development by investigating trends in Zambia’s Human Development Index between 1996 and 2012. The study also established the extent of lived poverty in Zambia by addressing how Zambians rated their living conditions based on how much access they had to essential commodities such as food, cooking fuel, water and cash income.
Ravinder, Singh. "Legalization of Privacy and Personal Data Governance: Feasibility Assessment for a New Global Framework Development." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35333.
Full textImaginário, João Tiago Inverno. "The impact of governance in government debt." Master's thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/16581.
Full textEsta dissertação estuda a relação entre os Worldwide Governance Indicators e a Dívida Pública em 164 países para o período entre 2002 e 2015. Para tal, estimaram-se os modelos de fixed effects (FE) e generalized method of moments (GMM). Os resultados sugerem que a qualidade da governance está negativamente e estatisticamente relacionada com a dívida. Para os países de rendimento per capita mais baixo, foi encontrada evidência de que um melhor ambiente de governance está associado a níveis mais baixos de dívida pública.
This dissertation examines the relationship between Worldwide Governance Indicators and Government Debt in 164 countries for the period between 2002 and 2015. For this purpose, fixed effects (FE) and generalized method of moments (GMM) models are estimated. The results suggest that governance quality is negatively and statistically related with government debt. For Low Income countries was found evidence that better governance environment is associated with lower public debt levels.
info:eu-repo/semantics/publishedVersion
Leite, Christopher C. "Evolutions in Transnational Authority: Practices of Risk and Data in European Disaster and Security Governance." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35121.
Full textCastillo, Luis Felipe, Carlos Raymundo, and Francisco Dominguez Mateos. "Information architecture model for the successful data governance initiative in the peruvian higher education sector." Institute of Electrical and Electronics Engineers Inc, 2017. http://hdl.handle.net/10757/656364.
Full textThe research revealed the need to design an information architecture model for Data Governance initiative that can serve as an intercom between current IT / IS management trends: Information technology (IT) management and information management. A model is needed that strikes a balance between the need to invest in technology and the ability to manage the information that originates from the use of those technologies, as well as to measure with greater precision the generation of IT value through the use of quality information and user satisfaction, using the technologies that make it possible for the information to reach them to be used in their daily work.
Dal, Maso Alvise <1993>. "The evolution of Data Governance: a tool for an improved and enhanced decision-making process." Master's Degree Thesis, Università Ca' Foscari Venezia, 2019. http://hdl.handle.net/10579/15950.
Full textPrimerano, Ilaria. "A symbolic data analysis approach to explore the relation between governance and performance in the Italian industrial districs." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2179.
Full textNowadays, complex phenomena need to bee analyzed through appropriate statistical methods that allow considering the knowledge hidden behind the classical data structure... [edited by author]
XIII n.s.