Academic literature on the topic 'Data processing pipeline'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data processing pipeline.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data processing pipeline"
Curcoll, R. Firpo, M. Delfino, C. Neissner, I. Reichardt, J. Rico, P. Tallada, and N. Tonello. "The MAGIC data processing pipeline." Journal of Physics: Conference Series 331, no. 3 (December 23, 2011): 032040. http://dx.doi.org/10.1088/1742-6596/331/3/032040.
Full textWeilbacher, Peter M., Ralf Palsa, Ole Streicher, Roland Bacon, Tanya Urrutia, Lutz Wisotzki, Simon Conseil, et al. "The data processing pipeline for the MUSE instrument." Astronomy & Astrophysics 641 (September 2020): A28. http://dx.doi.org/10.1051/0004-6361/202037855.
Full textShen, Hong, and Nobuyoshi Numata. "Instruction Scheduling on a Pipelined Processor for Mechanical Measurements." Key Engineering Materials 381-382 (June 2008): 647–48. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.647.
Full textLeroy, Adam K., Annie Hughes, Daizhong Liu, Jérôme Pety, Erik Rosolowsky, Toshiki Saito, Eva Schinnerer, et al. "PHANGS–ALMA Data Processing and Pipeline." Astrophysical Journal Supplement Series 255, no. 1 (July 1, 2021): 19. http://dx.doi.org/10.3847/1538-4365/abec80.
Full textAndrews, Peter, Charles Baltay, Anne Bauer, Nancy Ellman, Jonathan Jerke, Rochelle Lauer, David Rabinowitz, and Julia Silge. "The QUEST Data Processing Software Pipeline." Publications of the Astronomical Society of the Pacific 120, no. 868 (June 2008): 703–14. http://dx.doi.org/10.1086/588828.
Full textZuo, S., J. Li, Y. Li, D. Santanu, A. Stebbins, K. W. Masui, R. Shaw, J. Zhang, F. Wu, and X. Chen. "Data processing pipeline for Tianlai experiment." Astronomy and Computing 34 (January 2021): 100439. http://dx.doi.org/10.1016/j.ascom.2020.100439.
Full textShipman, R. F., S. F. Beaulieu, D. Teyssier, P. Morris, M. Rengel, C. McCoey, K. Edwards, et al. "Data processing pipeline for Herschel HIFI." Astronomy & Astrophysics 608 (December 2017): A49. http://dx.doi.org/10.1051/0004-6361/201731385.
Full textBrumer, Irène, Dominik F. Bauer, Lothar R. Schad, and Frank G. Zöllner. "Synthetic Arterial Spin Labeling MRI of the Kidneys for Evaluation of Data Processing Pipeline." Diagnostics 12, no. 8 (July 31, 2022): 1854. http://dx.doi.org/10.3390/diagnostics12081854.
Full textChen, Rongxin, Zongyue Wang, and Yuling Hong. "Pipelined XPath Query Based on Cost Optimization." Scientific Programming 2021 (May 27, 2021): 1–16. http://dx.doi.org/10.1155/2021/5559941.
Full textAlblehai, Fahad. "A Caching-Based Pipelining Model for Improving the Input/Output Performance of Distributed Data Storage Systems." Journal of Nanoelectronics and Optoelectronics 17, no. 6 (June 1, 2022): 946–57. http://dx.doi.org/10.1166/jno.2022.3269.
Full textDissertations / Theses on the topic "Data processing pipeline"
Jakubiuk, Wiktor. "High performance data processing pipeline for connectome segmentation." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106122.
Full text"December 2015." Cataloged from PDF version of thesis.
Includes bibliographical references (pages 83-88).
By investigating neural connections, neuroscientists try to understand the brain and reconstruct its connectome. Automated connectome reconstruction from high resolution electron miscroscopy is a challenging problem, as all neurons and synapses in a volume have to be detected. A mm3 of a high-resolution brain tissue takes roughly a petabyte of space that the state-of-the-art pipelines are unable to process to date. A high-performance, fully automated image processing pipeline is proposed. Using a combination of image processing and machine learning algorithms (convolutional neural networks and random forests), the pipeline constructs a 3-dimensional connectome from 2-dimensional cross-sections of a mammal's brain. The proposed system achieves a low error rate (comparable with the state-of-the-art) and is capable of processing volumes of 100's of gigabytes in size. The main contributions of this thesis are multiple algorithmic techniques for 2- dimensional pixel classification of varying accuracy and speed trade-off, as well as a fast object segmentation algorithm. The majority of the system is parallelized for multi-core machines, and with minor additional modification is expected to work in a distributed setting.
by Wiktor Jakubiuk.
M. Eng. in Computer Science and Engineering
Nakane, Takanori. "Data processing pipeline for serial femtosecond crystallography at SACLA." Kyoto University, 2017. http://hdl.handle.net/2433/217997.
Full textGu, Wenyu. "Improving the performance of stream processing pipeline for vehicle data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284547.
Full textDen växande mängden positionsberoende data (som innehåller både geo-positionsdata (dvs. latitud, longitud) och även fordons- / förarelaterad information) som samlats in från sensorer på fordon utgör en utmaning för datorprogram att bearbeta den totala mängden data från många fordon. Medan den här växande mängden data hanteras måste datorprogrammen som behandlar dessa datauppvisa låg latens och hög genomströmning - annars minskar värdet på resultaten av denna bearbetning. Som en lösning har big data och cloud computing-tekniker använts i stor utsträckning av industrin. Denna avhandling undersöker en molnbaserad bearbetningspipeline som bearbetar fordonsplatsdata. Systemet tar emot fordonsdata i realtid och behandlar data på ett strömmande sätt. Målet är att förbättra prestanda för denna strömmande pipeline, främst med avseende på latens och kostnad. Arbetet började med att titta på den nuvarande lösningen med AWS Kinesis och AWS Lambda. En benchmarking-miljö skapades och användes för att mäta det aktuella systemets prestanda. Dessutom genomfördes en litteraturstudie för att hitta en bearbetningsram som bäst uppfyller både industriella och akademiska krav. Efter en jämförelse valdes Flink som det nya ramverket. En nylösning designades för att använda Fink. Därefter jämfördes prestandan för den nuvarande lösningen och den nya Flink-lösningen med samma benchmarking-miljö och. Slutsatsen är att den nya Flink-lösningen har 86,2% lägre latens samtidigt som den stöder tredubbla kapaciteten för det nuvarande systemet till nästan samma kostnad.
González, Alejandro. "A Swedish Natural Language Processing Pipeline For Building Knowledge Graphs." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254363.
Full textVetskapen om kunskap är den del av det som definierar den nutida människan (som vet, att hon vet). De immateriella begreppen oberoende av materiella attribut är en del av beviset på att människan en själslig varelse som till viss del är oberoende av materialet. För närvarande försöker forskningsinsatser inom artificiell intelligens efterlikna det mänskliga betandet med hjälp av datorer genom att "lära" dem hur man läser och förstår mänskligt språk genom att använda maskininlärningstekniker relaterade till behandling av mänskligt språk. Det finns emellertid fortfarande ett betydande antal utmaningar, till exempel hur man representerar denna kunskap så att den kan användas av en maskin för att dra slutsatser eller ge svar utifrån detta. Denna avhandling presenterar en studie i användningen av ”Natural Language Processing” i en pipeline som kan generera en kunskapsrepresentation av informationen utifrån det svenska språket som bas. Resultatet är ett system som, med svensk text i råformat, bygger en representation i form av en kunskapsgraf av kunskapen eller informationen i den texten.
SHARMA, DIVYA. "APPLICATION OF ML TO MAKE SENCE OF BIOLOGICAL BIG DATA IN DRUG DISCOVERY PROCESS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18378.
Full textPatuzzi, Ilaria. "16S rRNA gene sequencing sparse count matrices: a count data simulator and optimal pre-processing pipelines." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426369.
Full textLo studio delle comunità microbiche è profondamente cambiato da quando fu per la prima volta proposto nel XVII secolo. Quando il ruolo fondamentale dei microbi nel regolare e causare malattie umane divenne evidente, i ricercatori iniziarono a sviluppare una varietà di tecniche per isolare e coltivare i batteri in laboratorio con l'obiettivo di caratterizzarli e classificarli. Alla fine degli anni '70, una svolta in come venivano studiate le comunità batteriche fu apportata dalla scoperta che i geni che codificano per l'RNA ribosomale (rRNA) potevano essere utilizzati come marcatori molecolari per la classificazione degli organismi. Alcuni decenni più tardi, l'avvento della tecnologia di sequenziamento del DNA ha rivoluzionato lo studio delle comunità microbiche, consentendo una visione complessiva coltura-indipendente della comunità contenuta in un campione. Oggi, uno degli approcci più diffusi per profilazione di comunità microbiche si basa sul sequenziamento del gene che codifica per la subunità 16S del ribosoma procariotico (gene dell'rRNA 16S). Poiché il ribosoma svolge un ruolo essenziale nella vita procariotica, esso è onnipresente in tutti i batteri, ma la sua esatta sequenza di DNA è unica per ogni specie. Per questo motivo, esso viene utilizzato come una sorta di impronta molecolare per assegnare a ciascun membro della comunità una caratterizzazione tassonomica. L'avvento delle piattaforme di Next Generation Sequencing (NGS), in grado di produrre un'enorme mole di dati riducendo tempi e costi, ha assicurato alla tecnica di sequenziamento del gene rRNA 16S (16S rDNA-Seq) una crescita nel tasso di elezione come metodologia preferita per eseguire studi sul microbioma. Nonostante ciò, il continuo sviluppo di procedure sia sperimentali che computazionali per 16S rDNA-Seq ha causato una inevitabile mancanza di standardizzazione riguardo al trattamento e all'analisi dei dati di sequenziamento. Ciò è ulteriormente complicato dalle caratteristiche molto peculiari che contraddistinguono la matrice in cui tipicamente le informazioni dei campioni sono riassunte dopo il sequenziamento. Infatti, il limite strumentale sul numero massimo di sequenze ottenibili rende i dati 16S rDNA-Seq composizionali, cioè dati in cui l'abbondanza rilevata di ogni specie batterica dipende dal livello di presenza di altre popolazioni nel campione. Inoltre, le matrici derivate da 16S rDNA-Seq sono in genere molto sparse (70-95% di valori nulli). Ciò è dovuto sia alla diversità biologica tra i campioni sia alla perdita di informazione sulle specie rare durante il sequenziamento, un effetto che è fortemente dipendente sia dalla distribuzione solitamente asimmetrica delle abbondanze delle specie presenti nei microbiomi, sia dal numero di campioni sequenziati nella stessa corsa di sequenziamento (il cosiddetto livello di multiplexing). Le suddette peculiarità rendono la comunemente adottata mutuazione di tool e approcci dall’ambito del sequenziamento di tipo bulk RNA inadeguata per analisi di matrici di conte derivanti da 16S rDNA-Seq. In particolare, fasi di pre-elaborazione non specifiche, come la normalizzazione, rischiano di introdurre forti bias in caso di matrici molto sparse. L'obiettivo principale di questa tesi era quello di identificare delle pipeline di analisi ottimali che riempissero le suddette lacune al fine di ottenere conclusioni solide e affidabili dall'analisi dei dati dell'rRNA-Seq 16S. Tra tutte le fasi di analisi incluse in una tipica pipeline, questo progetto si è concentrato sulla pre-elaborazione di matrici di conte ottenute da esperimenti di 16S rDNA-Seq. Questo scopo è stato raggiunto attraverso diversi passaggi. In primo luogo, sono stati identificati metodi all'avanguardia per la pre-elaborazione dei dati di conte di 16S rDNA-Seq eseguendo un'accurata ricerca bibliografica, che ha rivelato una minima disponibilità di strumenti specifici e la completa mancanza nella consueta pipeline di analisi 16S rDNA-Seq di una fase di pre-elaborazione in cui venga recuperata la perdita di informazioni dovuta al sequenziamento (zero-imputation). Allo stesso tempo, la ricerca bibliografica ha evidenziato che non erano disponibili simulatori specifici per ottenere direttamente dati di conte 16S rDNA-Seq sintetici su cui eseguire l'analisi per identificare pipeline di pre-elaborazione ottimali. Di consequenza, è stato sviluppato un simulatore di matrici di conte sparse derivanti da 16S rDNA-Seq che considera la natura composizionale di questi dati. In seguito, un'analisi comparativa completa di quarantanove pipeline di pre-elaborazione è stata progettata ed eseguita con lo scopo di valutare le prestazioni degli approcci di pre-elaborazione più comunemente utilizzati e più recenti e per verificare l’appropriatezza dell’inclusione di una fase di zero-imputation nel contesto delle analisi di 16S rDNA-Seq. Nel complesso, questa tesi considera il problema della pre-elaborazione dei dati provenienti da 16S rDNA-Seq e fornisce una guida utile per una pre-elaborazione dei dati robusta quando durante un'analisi 16S rDNA-Seq. Inoltre, il simulatore proposto in questo lavoro potrebbe essere uno stimolo e uno strumento prezioso per i ricercatori coinvolti nello sviluppo e nel test dei metodi di bioinformatica, contribuendo così a colmare la mancanza di strumenti specifici per i dati di rDNA-Seq 16S.
NIGRI, ANNA. "Quality data assessment and improvement in pre-processing pipeline to minimize impact of spurious signals in functional magnetic imaging (fMRI)." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2911412.
Full textTorkler, Phillipp [Verfasser], and Johannes [Akademischer Betreuer] Söding. "STAMMP : A statistical model and processing pipeline for PAR-CLIP data reveals transcriptome maps of mRNP biogenesis factors / Phillipp Torkler. Betreuer: Johannes Söding." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1072376628/34.
Full textMaarouf, Marwan Younes. "XML Integrated Environment For Service-Oriented Data Management." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1180450288.
Full textSeverini, Nicola. "Analysis, Development and Experimentation of a Cognitive Discovery Pipeline for the Generation of Insights from Informal Knowledge." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21013/.
Full textBooks on the topic "Data processing pipeline"
A, Engeda, American Society of Mechanical Engineers. Process Industries Division., and International Mechanical Engineering Congress and Exposition (2000 : Orlando, Fla.), eds. Challenges and goals in industrial and pipeline compressors: Presented at the 2000 ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2000, Orlando, Florida. New York, N.Y: American Society of Mechanical Engineers, 2000.
Find full textCheng shi di xia guan xian xin xi hua yan jiu yu shi jian. Beijing Shi: Beijing you dian da xue chu ban she, 2010.
Find full textSzczotka, Marek. Metoda sztywnych elementów skończonych w modelowaniu nieliniowych układów w technice morskiej: The rigid finite element method in modeling of nonlinear offshore systems. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 2011.
Find full textO'Siadhail, Micheal. Simulation and analysis of gas networks. London: E. & F.N. Spon, 1987.
Find full textOffice, General Accounting. General Services Administration: Response to follow-up questions related to building repairs and alterations and courthouse utilization : [report to] the Honorable Bob Franks, chairman, Subcommittee on Economic Development, Public Buildings, Hazardous Materials, and Pipeline Transportation, Committee on Transportation and Infrastructure, House of Representatives. Washington, D.C: The Office, 2000.
Find full textPeter, Langsten, American Society of Mechanical Engineers. Pressure Vessels and Piping Division., and Pressure Vessels and Piping Conference (1994 : Minneapolis, Minn.), eds. Advanced computer applications, 1994: Presented at the 1994 Pressure Vessels and Piping Conference, Minneapolis, Minnesota, June 19-23, 1994. New York, N.Y: American Society of Mechanical Engineers, 1994.
Find full textK, Karim-Panahi, American Society of Mechanical Engineers. Pressure Vessels and Piping Division., and Pressure Vessels and Piping Conference (1997 : Orlando, Fla.), eds. Advances in analytical, experimental, and computational technologies in fluids, structures, transients, and natural hazards: Presented at the 1997 ASME Pressure Vessels and Piping Conference, Orlando, Florida, July 27-31, 1997. New York, N.Y: American Society of Mechanical Engineers, 1997.
Find full textPsaltis, Andrew. Streaming Data: Understanding the real-time pipeline. Manning Publications, 2017.
Find full textBook chapters on the topic "Data processing pipeline"
Bajcsy, Peter, Joe Chalfoun, and Mylene Simon. "Functionality of Web Image Processing Pipeline." In Web Microanalysis of Big Image Data, 17–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63360-2_2.
Full textBajcsy, Peter, Joe Chalfoun, and Mylene Simon. "Components of Web Image Processing Pipeline." In Web Microanalysis of Big Image Data, 63–104. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63360-2_4.
Full textFournier, Fabiana, and Inna Skarbovsky. "Real-Time Data Processing." In Big Data in Bioeconomy, 147–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_11.
Full textRengarajan, Krushnaa, and Vijay Krishna Menon. "Generalizing Streaming Pipeline Design for Big Data." In Machine Intelligence and Signal Processing, 149–60. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1366-4_12.
Full textBrown, David M., Adriana Soto-Corominas, Juan Luis Surez, and Javier de la Rosa. "Overview – The Social Media Data Processing Pipeline." In The SAGE Handbook of Social Media Research Methods, 125–45. 1 Oliver's Yard, 55 City Road London EC1Y 1SP: SAGE Publications Ltd, 2016. http://dx.doi.org/10.4135/9781473983847.n9.
Full textKatti, Anantshesh, and M. Sumana. "Pipeline for Pre-processing of Audio Data." In IOT with Smart Systems, 191–98. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3575-6_21.
Full textLepsien, Arvid, Agnes Koschmider, and Wolfgang Kratsch. "Analytics Pipeline for Process Mining on Video Data." In Lecture Notes in Business Information Processing, 196–213. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-41623-1_12.
Full textGhantasala, Saicharan, Shabarni Gupta, Vimala Ashok Mani, Vineeta Rai, Tumpa Raj Das, Panga Jaipal Reddy, and Veenita Grover Shah. "Omics: Data Processing and Analysis." In Biomarker Discovery in the Developing World: Dissecting the Pipeline for Meeting the Challenges, 19–39. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2837-0_3.
Full textAshwini, Akanksha, and Jaerock Kwon. "Image Processing Pipeline for Web-Based Real-Time 3D Visualization of Teravoxel Volumes." In Data Mining and Big Data, 203–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93803-5_19.
Full textZhonghu, Li, Ma Bo, Wang Jinming, Yan Junhong, and Wang Luling. "Design of Pipeline Leak Data Acquisition and Processing System." In Advances in Intelligent Systems and Computing, 355–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00214-5_46.
Full textConference papers on the topic "Data processing pipeline"
Li, Liling, Tyler Danner, Jesse Eickholt, Erin McCann, Kevin Pangle, and Nicholas Johnson. "A distributed pipeline for DIDSON data processing." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258458.
Full textKrismentari, Ni Kadek Bumi, I. Made Oka Widyantara, Ngurah Indra ER, I. Made Dwi Putra Asana, I. Putu Noven Hartawan, and I. Gede Sudiantara. "Data Pipeline Framework for AIS Data Processing." In 2022 Seventh International Conference on Informatics and Computing (ICIC). IEEE, 2022. http://dx.doi.org/10.1109/icic56845.2022.10006941.
Full textSvyatkovskiy, A., K. Imai, M. Kroeger, and Y. Shiraito. "Large-scale text processing pipeline with Apache Spark." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7841068.
Full textMeyers, Bennet E., Elpiniki Apostolaki-Iosifidou, and Laura T. Schelhas. "Solar Data Tools: Automatic Solar Data Processing Pipeline." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300847.
Full textHuang, Thomas, and Larry Preheim. "Data Processing Pipeline With Transaction-Oriented Data Sharing." In Space OPS 2004 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-445-259.
Full textBeard, Andrew, Bruce Cowan, and Andrew Ferayorni. "DKIST visible broadband imager data processing pipeline." In SPIE Astronomical Telescopes + Instrumentation, edited by Gianluca Chiozzi and Nicole M. Radziwill. SPIE, 2014. http://dx.doi.org/10.1117/12.2057122.
Full textMwebaze, Johnson, Danny Boxhoorn, and Edwin Valentijn. "Dynamic Pipeline Changes in Scientific Data Processing." In 2011 IEEE 7th International Conference on E-Science (e-Science). IEEE, 2011. http://dx.doi.org/10.1109/escience.2011.44.
Full textJaved, M. Haseeb, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda. "Characterization of Big Data Stream Processing Pipeline." In UCC '17: 10th International Conference on Utility and Cloud Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3148055.3148068.
Full textGriffin, Matt, C. Darren Dowell, Tanya Lim, George Bendo, Jamie Bock, Christophe Cara, Nieves Castro-Rodriguez, et al. "The Herschel-SPIRE photometer data processing pipeline." In SPIE Astronomical Telescopes + Instrumentation, edited by Jacobus M. Oschmann, Jr., Mattheus W. M. de Graauw, and Howard A. MacEwen. SPIE, 2008. http://dx.doi.org/10.1117/12.788431.
Full textSukumar, Sushmi Thushara, Chung-Horng Lung, and Marzia Zaman. "Knowledge Graph Generation for Unstructured Data Using Data Processing Pipeline." In 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2023. http://dx.doi.org/10.1109/compsac57700.2023.00068.
Full textReports on the topic "Data processing pipeline"
Berres, Anne Sabine, Vignesh Adhinarayanan, Terece Turton, Wu Feng, and David Honegger Rogers. A Pipeline for Large Data Processing Using Regular Sampling for Unstructured Grids. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1357102.
Full textChambers. PR-348-09602-R01 Determine New Design and Construction Techniques for Transportation of Ethanol. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2013. http://dx.doi.org/10.55274/r0010546.
Full textZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan, and Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0012049.
Full textRuby, Jeffrey, Richard Massaro, John Anderson, and Robert Fischer. Three-dimensional geospatial product generation from tactical sources, co-registration assessment, and considerations. Engineer Research and Development Center (U.S.), February 2023. http://dx.doi.org/10.21079/11681/46442.
Full textWeeks and Dash Weeks. L52336 Weld Design Testing and Assessment Procedures for High-strength Pipelines Curved Wide Plate Tests. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2011. http://dx.doi.org/10.55274/r0010452.
Full textLeis. L51845 Database of Mechanical and Toughness Properties of Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2000. http://dx.doi.org/10.55274/r0010150.
Full text