Journal articles on the topic 'Data Sparsity Problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Data Sparsity Problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xue, Andy Yuan, Jianzhong Qi, Xing Xie, Rui Zhang, Jin Huang, and Yuan Li. "Solving the data sparsity problem in destination prediction." VLDB Journal 24, no. 2 (2014): 219–43. http://dx.doi.org/10.1007/s00778-014-0369-7.
Full textWan, Xinyue, Bofeng Zhang, Guobing Zou, and Furong Chang. "Sparse Data Recommendation by Fusing Continuous Imputation Denoising Autoencoder and Neural Matrix Factorization." Applied Sciences 9, no. 1 (2018): 54. http://dx.doi.org/10.3390/app9010054.
Full textZahedi, A., and M. H. Kahaei. "Frequency Estimation of Irregularly Sampled Data Using a Sparsity Constrained Weighted Least-Squares Approach." Engineering, Technology & Applied Science Research 3, no. 1 (2013): 368–72. http://dx.doi.org/10.48084/etasr.187.
Full textLiu, Li Min, Peng Xiang Zhang, Le Lin, and Zhi Wei Xu. "Research of Data Sparsity Based on Collaborative Filtering Algorithm." Applied Mechanics and Materials 462-463 (November 2013): 856–60. http://dx.doi.org/10.4028/www.scientific.net/amm.462-463.856.
Full textLi, Zhixian. "Exploring the Path of Innovative Development of Traditional Culture under Big Data." Computational Intelligence and Neuroscience 2022 (August 29, 2022): 1–10. http://dx.doi.org/10.1155/2022/7715851.
Full textYu, Chengyuan, and Linpeng Huang. "CluCF: a clustering CF algorithm to address data sparsity problem." Service Oriented Computing and Applications 11, no. 1 (2016): 33–45. http://dx.doi.org/10.1007/s11761-016-0191-8.
Full textKieu, Hai Dang, Hongchuan Yu, Zhuorong Li, and Jian Jun Zhang. "Locally weighted PCA regression to recover missing markers in human motion data." PLOS ONE 17, no. 8 (2022): e0272407. http://dx.doi.org/10.1371/journal.pone.0272407.
Full textGuo, Yuhong. "Convex Subspace Representation Learning from Multi-View Data." Proceedings of the AAAI Conference on Artificial Intelligence 27, no. 1 (2013): 387–93. http://dx.doi.org/10.1609/aaai.v27i1.8565.
Full textPan, Weike, Evan Xiang, Nathan Liu, and Qiang Yang. "Transfer Learning in Collaborative Filtering for Sparsity Reduction." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (2010): 230–35. http://dx.doi.org/10.1609/aaai.v24i1.7578.
Full textSu, Chang, Yue Yu, Xianzhong Xie, and Yukun Wang. "Data Sensitive Recommendation Based On Community Detection." Foundations of Computing and Decision Sciences 40, no. 2 (2015): 143–59. http://dx.doi.org/10.1515/fcds-2015-0010.
Full textShanmuga Sundari, P., and M. Subaji. "Integrating Sentiment Analysis on Hybrid Collaborative Filtering Method in a Big Data Environment." International Journal of Information Technology & Decision Making 19, no. 02 (2020): 385–412. http://dx.doi.org/10.1142/s0219622020500108.
Full textDell’Aversano, Angela, Giovanni Leone, and Raffaele Solimene. "Comparing Two Approaches for Point-Like Scatterer Detection." International Journal of Antennas and Propagation 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/139235.
Full textChen, Xiang, Junxin Chen, Xiaoqin Lian, and Weimin Mai. "Resolving Data Sparsity via Aggregating Graph-Based User–App–Location Association for Location Recommendations." Applied Sciences 12, no. 14 (2022): 6882. http://dx.doi.org/10.3390/app12146882.
Full textGholami, Ali. "Residual statics estimation by sparsity maximization." GEOPHYSICS 78, no. 1 (2013): V11—V19. http://dx.doi.org/10.1190/geo2012-0035.1.
Full textNasiri, Mahdi, Behrouz Minaei, and Zeinab Sharifi. "Adjusting data sparsity problem using linear algebra and machine learning algorithm." Applied Soft Computing 61 (December 2017): 1153–59. http://dx.doi.org/10.1016/j.asoc.2017.05.042.
Full textRen, Xiaozhen, and Yuying Jiang. "Spatial Domain Terahertz Image Reconstruction Based on Dual Sparsity Constraints." Sensors 21, no. 12 (2021): 4116. http://dx.doi.org/10.3390/s21124116.
Full textIfada, Noor, and Richi Nayak. "A New Weighted-learning Approach for Exploiting Data Sparsity in Tag-based Item Recommendation Systems." International Journal of Intelligent Engineering and Systems 14, no. 1 (2021): 387–99. http://dx.doi.org/10.22266/ijies2021.0228.36.
Full textJunxi, Yang, Zongshui Wang, and Chong Chen. "GCN-MF: A graph convolutional network based on matrix factorization for recommendation." Innovation & Technology Advances 2, no. 1 (2024): 14–26. http://dx.doi.org/10.61187/ita.v2i1.30.
Full textHuang, Weiming, Baisong Liu, and Zhaoliang Wang. "A Metric Learning Perspective on the Implicit Feedback-Based Recommendation Data Imbalance Problem." Electronics 13, no. 2 (2024): 419. http://dx.doi.org/10.3390/electronics13020419.
Full textMat Nawi, Rosmamalmi, Chee Xuan Yui, Shahrul Azman Mohd Noah, Noryusliza Abdullah, and Norfaradilla Wahid. "A Cross-Domain Linked Open Data-Enabled in Collaborative Group Recommender System." Journal of Advanced Research in Applied Sciences and Engineering Technology 62, no. 3 (2024): 89–101. https://doi.org/10.37934/araset.62.3.89101.
Full textMustapha, Maidawa, Y. Dutse A., Ahmad Aminu, Ya'u Gital Abdulsalam, and Zahraddeen Yakubu Ismail. "An Improvised Business Intelligence Recommender System using Data Mining Algorithm." An Improvised Business Intelligence Recommender System using Data Mining Algorithm 8, no. 11 (2023): 12. https://doi.org/10.5281/zenodo.10297550.
Full textChoi, Keunho, Yongmoo Suh, and Donghee Yoo. "Extended Collaborative Filtering Technique for Mitigating the Sparsity Problem." International Journal of Computers Communications & Control 11, no. 5 (2016): 631. http://dx.doi.org/10.15837/ijccc.2016.5.2152.
Full textYin*, Yuyu, Haoran Xu, Tingting Liang*, Manman Chen, Honghao Gao, and Antonella Longo. "Leveraging Data Augmentation for Service QoS Prediction in Cyber-physical Systems." ACM Transactions on Internet Technology 21, no. 2 (2021): 1–25. http://dx.doi.org/10.1145/3425795.
Full textYu, Jiangni, Lixiang Li, and Yixian Yang. "Topology Identification of Coupling Map Lattice under Sparsity Condition." Mathematical Problems in Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/303454.
Full textHo-Nguyen, Nam, and Fatma Kılınç-Karzan. "Technical Note—Dynamic Data-Driven Estimation of Nonparametric Choice Models." Operations Research 69, no. 4 (2021): 1228–39. http://dx.doi.org/10.1287/opre.2020.2077.
Full textGuo, Jingfeng, Chao Zheng, Shanshan Li, Yutong Jia, and Bin Liu. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation." Mathematics 10, no. 17 (2022): 3042. http://dx.doi.org/10.3390/math10173042.
Full textKwon, Hyeong-Joon, and Kwang Seok Hong. "Novel Neighbor Selection Method to Improve Data Sparsity Problem in Collaborative Filtering." International Journal of Distributed Sensor Networks 9, no. 8 (2013): 847965. http://dx.doi.org/10.1155/2013/847965.
Full textCheng, Guang Hua. "An Effective Hybrid Collaborative Recommendation Algorithm for Alleviating Data Sparsity." Applied Mechanics and Materials 39 (November 2010): 535–39. http://dx.doi.org/10.4028/www.scientific.net/amm.39.535.
Full textKhoshsokhan, S., R. Rajabi, and H. Zayyani. "DISTRIBUTED UNMIXING OF HYPERSPECTRAL DATAWITH SPARSITY CONSTRAINT." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4 (September 26, 2017): 145–50. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w4-145-2017.
Full textZeng, Fanfan, Hongwei Du, Jiaquan Jin, Jinzhang Xu, and Bensheng Qiu. "Compressed Sensing MRI via Extended Anisotropic and Isotropic Total Variation." Journal of Medical Imaging and Health Informatics 9, no. 6 (2019): 1066–75. http://dx.doi.org/10.1166/jmihi.2019.2702.
Full textYuan, Jinfeng, and Li Li. "Recommendation Based on Trust Diffusion Model." Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/159594.
Full textZhu, Hong, Li-Zhi Liao, and Michael K. Ng. "Multi-Instance Dimensionality Reduction via Sparsity and Orthogonality." Neural Computation 30, no. 12 (2018): 3281–308. http://dx.doi.org/10.1162/neco_a_01140.
Full textHanhela, Matti, Olli Gröhn, Mikko Kettunen, Kati Niinimäki, Marko Vauhkonen, and Ville Kolehmainen. "Data-Driven Regularization Parameter Selection in Dynamic MRI." Journal of Imaging 7, no. 2 (2021): 38. http://dx.doi.org/10.3390/jimaging7020038.
Full textBoualaoui, Bouchra, Ahmed Zellou, and Mouna Berquedich. "Knowledge Graph-Based Recommender Systems to Mitigate Data Sparsity: A Systematic Literature Review." International Journal of Interactive Mobile Technologies (iJIM) 19, no. 03 (2025): 115–40. https://doi.org/10.3991/ijim.v19i03.49427.
Full textLi, Xiu Juan, and He Biao Yang. "Application and Research on Distributed Collaborative Filtering Recommendation Algorithm Based on Hadoop." Applied Mechanics and Materials 713-715 (January 2015): 1615–21. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1615.
Full textKwon, Hyeong-Joon, and Kwang-Seok Hong. "Method to Improve Data Sparsity Problem of Collaborative Filtering Using Latent Attribute Preference." Journal of Korean Society for Internet Information 14, no. 5 (2013): 59–67. http://dx.doi.org/10.7472/jksii.2013.14.5.59.
Full textWen, Ying, Le Zhang, and Lili Hou. "Discriminant Sparsity Preserving Analysis for Face Recognition." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 02 (2016): 1656003. http://dx.doi.org/10.1142/s0218001416560036.
Full textNatarajan, Senthilselvan, Subramaniyaswamy Vairavasundaram, Sivaramakrishnan Natarajan, and Amir H. Gandomi. "Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data." Expert Systems with Applications 149 (July 2020): 113248. http://dx.doi.org/10.1016/j.eswa.2020.113248.
Full textBi, Bo, Bo Han, Weimin Han, Jinping Tang, and Li Li. "Image Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation." Computational and Mathematical Methods in Medicine 2015 (2015): 1–23. http://dx.doi.org/10.1155/2015/286161.
Full textZhou, Junkai, Bo Jiang, Jie Yang, et al. "Service Discovery Method Based on Knowledge Graph and Word2vec." Electronics 11, no. 16 (2022): 2500. http://dx.doi.org/10.3390/electronics11162500.
Full textZhang, Xue, and Wangxin Xiao. "Active semi-supervised framework with data editing." Computer Science and Information Systems 9, no. 4 (2012): 1513–32. http://dx.doi.org/10.2298/csis120202045z.
Full textRiyadi, Daffa Barin Tizard, and Z. K. A. Baizal. "Collaborative Filtering with Dimension Reduction Technique and Clustering for E-Commerce Product." JURNAL MEDIA INFORMATIKA BUDIDARMA 7, no. 1 (2023): 376. http://dx.doi.org/10.30865/mib.v7i1.5538.
Full textMoriyoshi, Kenshin, Hiroki Shibata, and Yasufumi Takama. "Generation of Rating Matrix Based on Rational Behaviors of Users." Journal of Advanced Computational Intelligence and Intelligent Informatics 28, no. 1 (2024): 129–40. http://dx.doi.org/10.20965/jaciii.2024.p0129.
Full textYang, Xing-Yao, Feng Xu, Jiong Yu, Zi-Yang Li, and Dong-Xiao Wang. "Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation." Sensors 23, no. 12 (2023): 5572. http://dx.doi.org/10.3390/s23125572.
Full textHuang, Jiaquan, Zhen Jia, and Peng Zuo. "Improved collaborative filtering personalized recommendation algorithm based on k-means clustering and weighted similarity on the reduced item space." Mathematical Modelling and Control 3, no. 1 (2023): 39–49. http://dx.doi.org/10.3934/mmc.2023004.
Full textMenkin, A. V. "Development of a Music Recommender System Based on Content Metadata Processing." Vestnik NSU. Series: Information Technologies 17, no. 3 (2019): 43–60. http://dx.doi.org/10.25205/1818-7900-2019-17-3-43-60.
Full textBevacqua, Martina T., and Roberta Palmeri. "Qualitative Methods for the Inverse Obstacle Problem: A Comparison on Experimental Data." Journal of Imaging 5, no. 4 (2019): 47. http://dx.doi.org/10.3390/jimaging5040047.
Full textZang, Tingpeng, Guangrui Wen, and Zhifen Zhang. "Robust Estimation of the Unbalance of Rotor Systems Based on Sparsity Control of the Residual Model." Shock and Vibration 2018 (August 14, 2018): 1–8. http://dx.doi.org/10.1155/2018/6508695.
Full textZeng, Junhua, Yuning Qiu, Yumeng Ma, Andong Wang, and Qibin Zhao. "A Novel Tensor Ring Sparsity Measurement for Image Completion." Entropy 26, no. 2 (2024): 105. http://dx.doi.org/10.3390/e26020105.
Full textMore, Tejashree, and Prof Surekha Kohle. "Recommendation System Using Matrix Factorization." International Journal for Research in Applied Science and Engineering Technology 10, no. 9 (2022): 355–59. http://dx.doi.org/10.22214/ijraset.2022.46615.
Full text