Academic literature on the topic 'Data structure for quantum machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data structure for quantum machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data structure for quantum machine learning"
Zhao, Zhikuan, Jack K. Fitzsimons, Patrick Rebentrost, Vedran Dunjko, and Joseph F. Fitzsimons. "Smooth input preparation for quantum and quantum-inspired machine learning." Quantum Machine Intelligence 3 (April 26, 2021): 14. https://doi.org/10.1007/s42484-021-00045-x.
Full textSchuhmacher, Julian, Guglielmo Mazzola, Francesco Tacchino, et al. "Extending the reach of quantum computing for materials science with machine learning potentials." AIP Advances 12, no. 11 (2022): 115321. http://dx.doi.org/10.1063/5.0099469.
Full textPeters, Evan, and Maria Schuld. "Generalization despite overfitting in quantum machine learning models." Quantum 7 (December 20, 2023): 1210. http://dx.doi.org/10.22331/q-2023-12-20-1210.
Full textBalakumar, Arvind. "Quantum K-means Clustering and Classical k Means Clustering For Chest Pain Classification Using Qiskit." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (2022): 945–48. http://dx.doi.org/10.22214/ijraset.2022.47484.
Full textChakraborty, Sanjay, Soharab Hossain Shaikh, Sudhindu Bikash Mandal, Ranjan Ghosh, and Amlan Chakrabarti. "A study and analysis of a discrete quantum walk-based hybrid clustering approach using d-regular bipartite graph and 1D lattice." International Journal of Quantum Information 17, no. 02 (2019): 1950016. http://dx.doi.org/10.1142/s0219749919500163.
Full textOzpolat, Zeynep, and Murat Karabatak. "Performance Evaluation of Quantum-Based Machine Learning Algorithms for Cardiac Arrhythmia Classification." Diagnostics 13, no. 6 (2023): 1099. http://dx.doi.org/10.3390/diagnostics13061099.
Full textChristensen, Anders S., and O. Anatole von Lilienfeld. "Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties." CHIMIA International Journal for Chemistry 73, no. 12 (2019): 1028–31. http://dx.doi.org/10.2533/chimia.2019.1028.
Full textZuev, S. V. "Geometric properties of quantum entanglement and machine learning." Russian Technological Journal 11, no. 5 (2023): 19–33. http://dx.doi.org/10.32362/2500-316x-2023-11-5-19-33.
Full textConvy, Ian, William Huggins, Haoran Liao, and K. Birgitta Whaley. "Mutual information scaling for tensor network machine learning." Machine Learning: Science and Technology 3, no. 1 (2022): 015017. http://dx.doi.org/10.1088/2632-2153/ac44a9.
Full textRaubitzek, Sebastian, and Kevin Mallinger. "On the Applicability of Quantum Machine Learning." Entropy 25, no. 7 (2023): 992. http://dx.doi.org/10.3390/e25070992.
Full textDissertations / Theses on the topic "Data structure for quantum machine learning"
ERBA, VITTORIO. "Aspects of data structure in machine learning." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/873262.
Full textERBA, VITTORIO. "ASPECTS OF DATA STRUCTURE IN MACHINE LEARNING." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/873502.
Full textLever, G. "Exploiting structure defined by data in machine learning : some new analyses." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1302070/.
Full textHu, Hae-Jin. "Design of Comprehensible Learning Machine Systems for Protein Structure Prediction." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/cs_diss/22.
Full textStraub, Kayla Marie. "Data Mining Academic Emails to Model Employee Behaviors and Analyze Organizational Structure." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71320.
Full textPolianskii, Vladislav. "An Investigation of Neural Network Structure with Topological Data Analysis." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238702.
Full textAbu-Hakmeh, Khaldoon Emad. "Assessing the use of voting methods to improve Bayesian network structure learning." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45826.
Full textIqbal, Sumaiya. "Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2379.
Full textChen, Jonathan Jun Feng. "Data Mining/Machine Learning Techniques for Drug Discovery: Computational and Experimental Pipeline Development." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1524661027035591.
Full textTodorov, Helena. "Structure learning to unravel mechanisms of the immune system." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN084.
Full textBooks on the topic "Data structure for quantum machine learning"
Michael, Affenzeller, ed. Genetic algorithms and genetic programming: Modern concepts and practical applications. Chapman & Hall/CRC, 2009.
Find full textWittek, Peter. Quantum Machine Learning: What Quantum Computing Means to Data Mining. Elsevier Science & Technology Books, 2016.
Find full textWittek, Peter. Quantum Machine Learning: What Quantum Computing Means to Data Mining. Elsevier Science & Technology Books, 2014.
Find full textQuantum Machine Learning: What Quantum Computing Means to Data Mining. Elsevier Science & Technology Books, 2014.
Find full textRauf, Ijaz A. Physics of Data Science and Machine Learning. Taylor & Francis Group, 2021.
Find full textRauf, Ijaz A. Physics of Data Science and Machine Learning. Taylor & Francis Group, 2021.
Find full textRauf, Ijaz A. Physics of Data Science and Machine Learning. Taylor & Francis Group, 2021.
Find full textSmith, Noah A. Linguistic Structure Prediction. Springer International Publishing AG, 2011.
Find full textBook chapters on the topic "Data structure for quantum machine learning"
Guan, Ji, Wang Fang, and Mingsheng Ying. "Verifying Fairness in Quantum Machine Learning." In Computer Aided Verification. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13188-2_20.
Full textTanaka, Akihiro, Juniper Tyree, Anton Björklund, Jarmo Mäkelä, and Kai Puolamäki. "$$\chi $$iplot: Web-First Visualisation Platform for Multidimensional Data." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43430-3_26.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Science. Springer US, 2023. http://dx.doi.org/10.1007/978-1-4899-7502-7_913-2.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining. Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_913-1.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining. Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_913.
Full textChakraborty, Sanjay, and Lopamudra Dey. "Quantum Computing in Machine Learning." In Data-Intensive Research. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8004-6_7.
Full textMcClarren, Ryan G. "Finding Structure Within a Data Set: Data Reduction and Clustering." In Machine Learning for Engineers. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70388-2_4.
Full textPinilla, Jose P., and Steven J. E. Wilton. "Structure-Aware Minor-Embedding for Machine Learning in Quantum Annealing Processors." In Quantum Computing. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37966-6_5.
Full textKlopotek, Mieczyslaw A. "Learning belief network structure from data under causal insufficiency." In Machine Learning: ECML-94. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57868-4_78.
Full textRauf, Ijaz A. "An Overview of Quantum Mechanics." In Physics of Data Science and Machine Learning. CRC Press, 2021. http://dx.doi.org/10.1201/9781003206743-3.
Full textConference papers on the topic "Data structure for quantum machine learning"
Shrivastava, Aviral, and Vinayak Sharma. "Primer on Data in Quantum Machine Learning." In 2024 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). IEEE, 2024. http://dx.doi.org/10.1109/cases60062.2024.00010.
Full textRamos-Pulido, Sofía, Neil Hernández-Gress, Glen S. Uehara, Andreas Spanias, and Héctor Ceballos-Cancino. "Implementation of Quantum Machine Learning on Educational Data." In 17th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013154500003890.
Full textIslam, Md Majedul, and Jing Selena He. "Abdominal Trauma Detection using Hybrid Quantum Machine Learning." In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825833.
Full textDhanalakshmi, K., and G. Nagarajan. "Quantum Machine Learning for Invasive Ductal Carcinoma Classification using Quantum Kernels." In 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI). IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810956.
Full textBagoun, Yassine, Ahmed Zinedine, and Ismail Berrada. "Autism Spectrum Disorder Detection with Quantum Machine Learning Methods." In 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, 2024. http://dx.doi.org/10.1109/icds62089.2024.10756377.
Full textChester, Mason, Ethan Barton, Andrew Liban, Andrew Polisetty, and Yong Shi. "Quantum-Based Multi-Model Machine Learning for Security Data Analysis." In 2024 IEEE 4th International Conference on Advanced Learning Technologies on Education & Research (ICALTER). IEEE, 2024. https://doi.org/10.1109/icalter65499.2024.10819207.
Full textThelasingha, Neelanga, and Thilanka Munasinghe. "Energy Infrastructure Risk Modeling using Quantum and Classical Machine Learning." In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825420.
Full textHernandez, Andres Correa, and Claire F. Gmachl. "Machine Learning for Quantum Cascade Laser Design and Optimization." In CLEO: Science and Innovations. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sw3h.3.
Full textChen, Kuan-Cheng, Yi-Tien Li, Tai-Yu Li, Chen-Yu Liu, Po-Heng Henry Lee, and Cheng-Yu Chen. "CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data." In 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). IEEE, 2025. https://doi.org/10.1109/icasspw65056.2025.11011218.
Full textBraniff, Austin, Fengqi You, and Yuhe Tian. "Enhanced Reinforcement Learning-driven Process Design via Quantum Machine Learning." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.149501.
Full textReports on the topic "Data structure for quantum machine learning"
Perdigão, Rui A. P., and Julia Hall. Augmented Post-Quantum Synergistic Manifold Intelligence for Complex System Dynamics and Coevolutionary Multi-Hazards. Synergistic Manifolds, 2024. https://doi.org/10.46337/241211.
Full textPerdigão, Rui A. P., and Julia Hall. Empowering Next-Generation Synergies among Models and Data with Information Physical Quantum Technological Intelligence. Synergistic Manifolds, 2024. https://doi.org/10.46337/241209.
Full textPasupuleti, Murali Krishna. Quantum-Enhanced Machine Learning: Harnessing Quantum Computing for Next-Generation AI Systems. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv125.
Full textDutta, Sourav, Anna Wagner, Theadora Hall, and Nawa Raj Pradhan. Data-driven modeling of groundwater level using machine learning. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/48452.
Full textGoulet Coulombe, Philippe, Massimiliano Marcellino, and Dalibor Stevanovic. Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables. CIRANO, 2025. https://doi.org/10.54932/qgja3449.
Full textPeles, Amra, Scott Whalen, and Glenn Grant. Sparse Data Machine Learning Integration with Theory, Experiment and Uncertainty Quantification: Process-Structure-Property-Performance of Friction Deformation Processing. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1985698.
Full textAlonso-Robisco, Andrés, José Manuel Carbó, and José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Banco de España, 2023. http://dx.doi.org/10.53479/29594.
Full textPasupuleti, Murali Krishna. AI-Driven Automation: Transforming Industry 5.0 withMachine Learning and Advanced Technologies. National Education Services, 2025. https://doi.org/10.62311/nesx/rr225.
Full textCrowe. PR-261-15609-R01 Machine Learning Algorithms for Smart Meter Diagnostics Part II (TR2701). Pipeline Research Council International, Inc. (PRCI), 2015. http://dx.doi.org/10.55274/r0010862.
Full textBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, 2024. http://dx.doi.org/10.17760/d20680141.
Full text