Journal articles on the topic 'Data structure for quantum machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Data structure for quantum machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Zhikuan, Jack K. Fitzsimons, Patrick Rebentrost, Vedran Dunjko, and Joseph F. Fitzsimons. "Smooth input preparation for quantum and quantum-inspired machine learning." Quantum Machine Intelligence 3 (April 26, 2021): 14. https://doi.org/10.1007/s42484-021-00045-x.
Full textSchuhmacher, Julian, Guglielmo Mazzola, Francesco Tacchino, et al. "Extending the reach of quantum computing for materials science with machine learning potentials." AIP Advances 12, no. 11 (2022): 115321. http://dx.doi.org/10.1063/5.0099469.
Full textPeters, Evan, and Maria Schuld. "Generalization despite overfitting in quantum machine learning models." Quantum 7 (December 20, 2023): 1210. http://dx.doi.org/10.22331/q-2023-12-20-1210.
Full textBalakumar, Arvind. "Quantum K-means Clustering and Classical k Means Clustering For Chest Pain Classification Using Qiskit." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (2022): 945–48. http://dx.doi.org/10.22214/ijraset.2022.47484.
Full textChakraborty, Sanjay, Soharab Hossain Shaikh, Sudhindu Bikash Mandal, Ranjan Ghosh, and Amlan Chakrabarti. "A study and analysis of a discrete quantum walk-based hybrid clustering approach using d-regular bipartite graph and 1D lattice." International Journal of Quantum Information 17, no. 02 (2019): 1950016. http://dx.doi.org/10.1142/s0219749919500163.
Full textOzpolat, Zeynep, and Murat Karabatak. "Performance Evaluation of Quantum-Based Machine Learning Algorithms for Cardiac Arrhythmia Classification." Diagnostics 13, no. 6 (2023): 1099. http://dx.doi.org/10.3390/diagnostics13061099.
Full textChristensen, Anders S., and O. Anatole von Lilienfeld. "Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties." CHIMIA International Journal for Chemistry 73, no. 12 (2019): 1028–31. http://dx.doi.org/10.2533/chimia.2019.1028.
Full textZuev, S. V. "Geometric properties of quantum entanglement and machine learning." Russian Technological Journal 11, no. 5 (2023): 19–33. http://dx.doi.org/10.32362/2500-316x-2023-11-5-19-33.
Full textConvy, Ian, William Huggins, Haoran Liao, and K. Birgitta Whaley. "Mutual information scaling for tensor network machine learning." Machine Learning: Science and Technology 3, no. 1 (2022): 015017. http://dx.doi.org/10.1088/2632-2153/ac44a9.
Full textRaubitzek, Sebastian, and Kevin Mallinger. "On the Applicability of Quantum Machine Learning." Entropy 25, no. 7 (2023): 992. http://dx.doi.org/10.3390/e25070992.
Full textGhavasieh, A., and M. De Domenico. "Statistical physics of network structure and information dynamics." Journal of Physics: Complexity 3, no. 1 (2022): 011001. http://dx.doi.org/10.1088/2632-072x/ac457a.
Full textYudertha, Andreo, and Riski Dwimalida Putri. "Mapping Machine Learning Trends in Chemistry Research using LLM with Multi-Turn Prompting." SISTEMASI 14, no. 2 (2025): 587. https://doi.org/10.32520/stmsi.v14i2.4961.
Full textTemitope Oluwatosin Fatunmbi. "Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems." World Journal of Advanced Engineering Technology and Sciences 12, no. 1 (2024): 495–513. https://doi.org/10.30574/wjaets.2024.12.1.0057.
Full textJeng, Mingyoung, Alvir Nobel, Vinayak Jha, et al. "Leveraging Data Locality in Quantum Convolutional Classifiers." Entropy 26, no. 6 (2024): 461. http://dx.doi.org/10.3390/e26060461.
Full textLi, Yuan, and Duan Huang. "Boosted Binary Quantum Classifier via Graphical Kernel." Entropy 25, no. 6 (2023): 870. http://dx.doi.org/10.3390/e25060870.
Full textRaghavender, Maddali. "Quantum Machine Learning for Ultra-Fast Query Execution in High-Dimensional SQL Data Systems." International Journal of Leading Research Publication 3, no. 4 (2022): 1–13. https://doi.org/10.5281/zenodo.15107548.
Full textSrikumar, Maiyuren, Charles D. Hill, and Lloyd C. L. Hollenberg. "Clustering and enhanced classification using a hybrid quantum autoencoder." Quantum Science and Technology 7, no. 1 (2021): 015020. http://dx.doi.org/10.1088/2058-9565/ac3c53.
Full textHossain, Forhad, Kamrul Hasan, Al Amin, and Shakik Mahmud. "Quantum Machine Learning for Enhanced Cybersecurity: Proposing a Hypothetical Framework for Next-Generation Security Solutions." Journal of Technologies Information and Communication 4, no. 1 (2024): 32222. https://doi.org/10.55267/rtic/15824.
Full textSurdu, Vasile-Adrian, and Romuald Győrgy. "X-ray Diffraction Data Analysis by Machine Learning Methods—A Review." Applied Sciences 13, no. 17 (2023): 9992. http://dx.doi.org/10.3390/app13179992.
Full textParker, Amanda J., and Amanda S. Barnard. "Unsupervised structure classes vs. supervised property classes of silicon quantum dots using neural networks." Nanoscale Horizons 6, no. 3 (2021): 277–82. http://dx.doi.org/10.1039/d0nh00637h.
Full textTretiak, Sergei. "(Invited) Machine Learning in Chemistry: Reactive Force Fields for Carbon Structure Formation." ECS Meeting Abstracts MA2024-01, no. 9 (2024): 881. http://dx.doi.org/10.1149/ma2024-019881mtgabs.
Full textVlasic, Andrew, and Anh Pham. "Understanding the mapping of encode data through an implementation of quantum topological analysis." Quantum Information and Computation 23, no. 13&14 (2023): 1091–104. http://dx.doi.org/10.26421/qic23.13-14-2.
Full textAlonge, Enoch Oluwabusayo, Nsisong Louis Eyo-Udo, Bright Chibunna Ubanadu, Andrew Ifesinachi Daraojimba, Emmanuel Damilare Balogun, and Kolade Olusola Ogunsola. "Enhancing Data Security with Machine Learning: A Study on Fraud Detection Algorithms." Journal of Frontiers in Multidisciplinary Research 2, no. 1 (2021): 19–31. https://doi.org/10.54660/.ijfmr.2021.2.1.19-31.
Full textKallem, Bharat Kumar Reddy. "The Role of AI and Machine Learning in Financial Data Engineering." European Journal of Computer Science and Information Technology 13, no. 12 (2025): 75–84. https://doi.org/10.37745/ejcsit.2013/vol13n127584.
Full textPOLYAKOV, IGOR V., ALEXANDRA V. KRIVITSKAYA, and MARIA G. KHRENOVA. "STRUCTURE AND DYNAMICS OF THE ENZYME-SUBSTRATE COMPLEX OF N-ACETYLASPARTYLGLUTAMATE SYNTHASE ACCORDING TO COMPUTER SIMULATION DATA." Lomonosov chemistry journal 65, no. 4, 2024 (2024): 284–91. http://dx.doi.org/10.55959/msu0579-9384-2-2024-65-4-284-291.
Full textPomarico, Domenico, Annarita Fanizzi, Nicola Amoroso, et al. "A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case." Mathematics 9, no. 4 (2021): 410. http://dx.doi.org/10.3390/math9040410.
Full textChen, Yiwei, Yu Pan, Guofeng Zhang, and Shuming Cheng. "Detecting quantum entanglement with unsupervised learning." Quantum Science and Technology 7, no. 1 (2021): 015005. http://dx.doi.org/10.1088/2058-9565/ac310f.
Full textPang, Shan, Xinyi Yang, and Xiaofeng Zhang. "Aero Engine Component Fault Diagnosis Using Multi-Hidden-Layer Extreme Learning Machine with Optimized Structure." International Journal of Aerospace Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1329561.
Full textJorner, Kjell. "Putting Chemical Knowledge to Work in Machine Learning for Reactivity." CHIMIA 77, no. 1/2 (2023): 22. http://dx.doi.org/10.2533/chimia.2023.22.
Full textDağıstanlı, Hamdi. "Strain Effect and Artificial Inteligence Applications on Electronic Band Structure of MoS2." Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 4, no. 1 (2025): 38–50. https://doi.org/10.69560/cujast.1618074.
Full textAmisha G, Govindarao Kamala, Chandrika D, et al. "Quantitative Structure-Activity Relationship (QSAR) in Drug Discovery and Development." Journal of Pharma Insights and Research 3, no. 1 (2025): 241–51. https://doi.org/10.69613/d091zy53.
Full textBeer, Kerstin, Megha Khosla, Julius Köhler, Tobias J. Osborne, and Tianqi Zhao. "Quantum machine learning of graph-structured data." Physical Review A 108, no. 1 (2023). http://dx.doi.org/10.1103/physreva.108.012410.
Full textRay, Shawn. "Quantum-Inspired Data Embedding for Unlabeled Data in Sparse Environments: A Theoretical Framework for Improved Semi-Supervised Learning without Hardware Dependence." Sakarya University Journal of Computer and Information Sciences, December 5, 2024. https://doi.org/10.35377/saucis...1564497.
Full textRapp, Frederic, David A. Kreplin, Marco F. Huber, and Marco Roth. "Reinforcement learning-based architecture search for quantum machine learning." Machine Learning: Science and Technology, January 28, 2025. https://doi.org/10.1088/2632-2153/adaf75.
Full textLewis, James P., Pengju Ren, Xiaodong Wen, Yongwang Li, and Guanhua Chen. "Machine learning meets quantum mechanics in catalysis." Frontiers in Quantum Science and Technology 2 (August 31, 2023). http://dx.doi.org/10.3389/frqst.2023.1232903.
Full textUllah, Arif, Yuxinxin Chen, and Pavlo O. Dral. "Molecular quantum chemical data sets and databases for machine learning potentials." Machine Learning: Science and Technology, November 5, 2024. http://dx.doi.org/10.1088/2632-2153/ad8f13.
Full textSiebenmorgen, Till, Filipe Menezes, Sabrina Benassou, et al. "MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery." Nature Computational Science, May 10, 2024. http://dx.doi.org/10.1038/s43588-024-00627-2.
Full textDiao, Enhu, Yurong He, Xuhong Liu, et al. "First principles data-driven potentials for prediction of iron carbide clusters." Frontiers in Quantum Science and Technology 2 (May 25, 2023). http://dx.doi.org/10.3389/frqst.2023.1190522.
Full textGili, Kaitlin, Guillermo Alonso, and Maria Schuld. "An inductive bias from quantum mechanics: learning order effects with non-commuting measurements." Quantum Machine Intelligence 6, no. 2 (2024). http://dx.doi.org/10.1007/s42484-024-00200-0.
Full textCoates, Tom, Alexander M. Kasprzyk, and Sara Veneziale. "Machine learning the dimension of a Fano variety." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-41157-1.
Full textWach, Noah L., Manuel S. Rudolph, Fred Jendrzejewski, and Sebastian Schmitt. "Data re-uploading with a single qudit." Quantum Machine Intelligence 5, no. 2 (2023). http://dx.doi.org/10.1007/s42484-023-00125-0.
Full textSURESH, ABHINAV, Henning Schloemer, Baran Hashemi, and Annabelle Bohrdt. "Interpretable correlator Transformer for image-like quantum matter data." Machine Learning: Science and Technology, March 13, 2025. https://doi.org/10.1088/2632-2153/adc071.
Full textRan, Runheng, and Haozhen Situ. "Investigating the Generalization Ability of Parameterized Quantum Circuits with Hierarchical Structures." Artificial Intelligence Evolution, May 14, 2021, 11–22. http://dx.doi.org/10.37256/aie.212021826.
Full textPierre Lourenço, Maicon, Mosayeb Naseri, Lizandra Barrios Herrera, et al. "Quantum Active Learning for Structural Determination of Doped Nanoparticles - A Case Study of 4Al@Si11." Journal of the Brazilian Chemical Society, 2025. https://doi.org/10.21577/0103-5053.20250054.
Full textCorcione, Emilio, Fabian Jakob, Lukas Wagner, et al. "Machine learning enhanced evaluation of semiconductor quantum dots." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-54615-7.
Full textAikebaier, Faluke, Teemu Ojanen, and Jose Lado. "Machine learning the Kondo entanglement cloud from local measurements." November 9, 2023. https://doi.org/10.5281/zenodo.10090477.
Full textDeng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, and Zhao Li-Na. "Application and Prospect of Machine Learning in Photoelectron Spectroscopy." Acta Physica Sinica, 2024, 0. http://dx.doi.org/10.7498/aps.73.20240957.
Full textGupta, Riddhi S., Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, and Sally Shrapnel. "A systematic review of quantum machine learning for digital health." npj Digital Medicine 8, no. 1 (2025). https://doi.org/10.1038/s41746-025-01597-z.
Full textSkolik, Andrea, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran Dunjko. "Equivariant quantum circuits for learning on weighted graphs." npj Quantum Information 9, no. 1 (2023). http://dx.doi.org/10.1038/s41534-023-00710-y.
Full textSkolik, Andrea, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran Dunjko. "Equivariant quantum circuits for learning on weighted graphs." npj Quantum Information 9, no. 47 (2023). https://doi.org/10.1038/s41534-023-00710-y.
Full text