Academic literature on the topic 'Dataset selection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dataset selection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dataset selection"
Kumar, H. M. Keerthi, and B. S. Harish. "A New Feature Selection Method for Sentiment Analysis in Short Text." Journal of Intelligent Systems 29, no. 1 (December 4, 2018): 1122–34. http://dx.doi.org/10.1515/jisys-2018-0171.
Full textEndalie, Demeke, and Getamesay Haile. "Hybrid Feature Selection for Amharic News Document Classification." Mathematical Problems in Engineering 2021 (March 11, 2021): 1–8. http://dx.doi.org/10.1155/2021/5516262.
Full textPeter, Timm J., and Oliver Nelles. "Fast and simple dataset selection for machine learning." at - Automatisierungstechnik 67, no. 10 (October 25, 2019): 833–42. http://dx.doi.org/10.1515/auto-2019-0010.
Full textPerez-Alvarez, Susana, Guadalupe Gómez, and Christian Brander. "FARMS: A New Algorithm for Variable Selection." BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/319797.
Full textDash, Ch Sanjeev Kumar, Ajit Kumar Behera, Sarat Chandra Nayak, Satchidananda Dehuri, and Sung-Bae Cho. "An Integrated CRO and FLANN Based Classifier for a Non-Imputed and Inconsistent Dataset." International Journal on Artificial Intelligence Tools 28, no. 03 (May 2019): 1950013. http://dx.doi.org/10.1142/s0218213019500131.
Full textJamjoom, Mona. "The pertinent single-attribute-based classifier for small datasets classification." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 3 (June 1, 2020): 3227. http://dx.doi.org/10.11591/ijece.v10i3.pp3227-3234.
Full textDif, Nassima, and Zakaria Elberrichi. "An Enhanced Recursive Firefly Algorithm for Informative Gene Selection." International Journal of Swarm Intelligence Research 10, no. 2 (April 2019): 21–33. http://dx.doi.org/10.4018/ijsir.2019040102.
Full textOmara, Hicham, Mohamed Lazaar, and Youness Tabii. "Effect of Feature Selection on Gene Expression Datasets Classification Accurac." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (October 1, 2018): 3194. http://dx.doi.org/10.11591/ijece.v8i5.pp3194-3203.
Full textROCCO, C. B. V., R. L. SILVA, O. C. JUNIOR, and M. RUDEK. "SELEÇÃO DE SOFTWARE BASEADA EM AHP PARA CRIAÇÃO DE DATASET SINTÉTICO 3D." Revista SODEBRAS 15, no. 176 (August 2020): 50–55. http://dx.doi.org/10.29367/issn.1809-3957.15.2020.176.50.
Full textDevaraj, Senthilkumar, and S. Paulraj. "An Efficient Feature Subset Selection Algorithm for Classification of Multidimensional Dataset." Scientific World Journal 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/821798.
Full textDissertations / Theses on the topic "Dataset selection"
Sousa, Massáine Bandeira e. "Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/.
Full textNo melhoramento de plantas, a predição genômica (PG) é uma eficiente ferramenta para aumentar a eficiência seletiva de genótipos, principalmente, considerando múltiplos ambientes. Esta técnica tem como vantagem incrementar o ganho genético para características complexas e reduzir os custos. Entretanto, ainda são necessárias estratégias que aumentem a acurácia e reduzam o viés dos valores genéticos genotípicos. Nesse contexto, os objetivos foram: i) comparar duas estratégias para obtenção de subconjuntos de marcadores baseado em seus efeitos em relação ao seu impacto na acurácia da seleção genômica; ii) comparar a acurácia seletiva de quatro modelos de PG incluindo o efeito de interação genótipo × ambiente (G×A) e dois kernels (GBLUP e Gaussiano). Para isso, foram usados dados de um painel de diversidade de arroz (RICE) e dois conjuntos de dados de milho (HEL e USP). Estes foram avaliados para produtividade de grãos e altura de plantas. Em geral, houve incremento da acurácia de predição e na eficiência da seleção genômica usando subconjuntos de marcadores. Estes poderiam ser utilizados para construção de arrays e, consequentemente, reduzir os custos com genotipagem. Além disso, utilizando o kernel Gaussiano e incluindo o efeito de interação G×A há aumento na acurácia dos modelos de predição genômica.
Awwad, Tarek. "Context-aware worker selection for efficient quality control in crowdsourcing." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI099/document.
Full textCrowdsourcing has proved its ability to address large scale data collection tasks at a low cost and in a short time. However, due to the dependence on unknown workers, the quality of the crowdsourcing process is questionable and must be controlled. Indeed, maintaining the efficiency of crowdsourcing requires the time and cost overhead related to this quality control to stay low. Current quality control techniques suffer from high time and budget overheads and from their dependency on prior knowledge about individual workers. In this thesis, we address these limitation by proposing the CAWS (Context-Aware Worker Selection) method which operates in two phases: in an offline phase, the correlations between the worker declarative profiles and the task types are learned. Then, in an online phase, the learned profile models are used to select the most reliable online workers for the incoming tasks depending on their types. Using declarative profiles helps eliminate any probing process, which reduces the time and the budget while maintaining the crowdsourcing quality. In order to evaluate CAWS, we introduce an information-rich dataset called CrowdED (Crowdsourcing Evaluation Dataset). The generation of CrowdED relies on a constrained sampling approach that allows to produce a dataset which respects the requester budget and type constraints. Through its generality and richness, CrowdED helps also in plugging the benchmarking gap present in the crowdsourcing community. Using CrowdED, we evaluate the performance of CAWS in terms of the quality, the time and the budget gain. Results shows that automatic grouping is able to achieve a learning quality similar to job-based grouping, and that CAWS is able to outperform the state-of-the-art profile-based worker selection when it comes to quality, especially when strong budget ant time constraints exist. Finally, we propose CREX (CReate Enrich eXtend) which provides the tools to select and sample input tasks and to automatically generate custom crowdsourcing campaign sites in order to extend and enrich CrowdED
Lingle, Jeremy Andrew. "Evaluating the Performance of Propensity Scores to Address Selection Bias in a Multilevel Context: A Monte Carlo Simulation Study and Application Using a National Dataset." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/eps_diss/56.
Full textZoghi, Zeinab. "Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596756673292254.
Full textSilva, Wilbor Poletti. "Archaeomagnetic field intensity evolution during the last two millennia." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-19092018-135335/.
Full textVariações temporais do campo magnético da Terra fornecem uma grande diversidade de informações geofísicas sobre a dinâmica das diferentes camadas da Terra. Por ser um campo planetário, aspectos regionais e globais podem ser explorados, dependendo da escala de tempo das variações. Nesta tese, foram investigadas as variações do campo geomagnético para os dois últimos milênios. Para isso, aprimoramentos nos métodos de aquisição da intensidade geomagnética registrada em materiais arqueológicos foram realizados, bem como a aquisição de novos dados e uma avaliação crítica da base de dados arqueomagnética global. Dois novos avanços metodológicos são aqui propostos, sendo eles: i) correção para o método de micro-ondas do efeito da taxa de resfriamento, que está associada à diferença entre os tempos de resfriamento durante a manufatura do material e o das etapas de aquecimento durante o experimento de arqueointensidade; (ii) teste para correção da anisotropia termorremanente a partir da média aritmética de seis amostras posicionadas ortogonalmente umas às outras durante o experimento de arqueointensidade. A variação temporal da intensidade magnética para a América do Sul foi investigada a partir de nove dados inéditos, sendo três provenientes das ruínas das Missões Jesuíticas Guaraníticas e seis de sítios arqueológicos associados a fazendas de charque, ambos localizados no Rio Grande do Sul, Brasil, com idades que cobrem os últimos 400 anos. Esses dados, combinados com o banco de dados regionais de arqueointensidade, demonstram que a influência significativa de componentes não-dipolares do campo magnético na América do Sul começou em ~1800 CE. Finalmente, a partir de uma reavaliação do banco de dados globais de arqueointensidade uma nova interpretação foi proposta a respeito da evolução do dipolo axial geomagnético, sugerindo que essa componente está decrescendo constantemente desde ~700 CE devido à quebra da simetria das fontes advectivas que operam no núcleo externo.
Hrabina, Martin. "VÝVOJ ALGORITMŮ PRO ROZPOZNÁVÁNÍ VÝSTŘELŮ." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-409087.
Full textKhan, Md Jafar Ahmed. "Robust linear model selection for high-dimensional datasets." Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/31082.
Full textScience, Faculty of
Statistics, Department of
Graduate
Mo, Dengyao. "Robust and Efficient Feature Selection for High-Dimensional Datasets." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1299010108.
Full textPoolsawad, Nongnuch. "Practical approaches to mining of clinical datasets : from frameworks to novel feature selection." Thesis, University of Hull, 2014. http://hydra.hull.ac.uk/resources/hull:8620.
Full textKurra, Goutham. "Pattern Recognition in Large Dimensional and Structured Datasets." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1014322308.
Full textBooks on the topic "Dataset selection"
Geological Survey (U.S.) and Geological Survey (U.S.)., eds. Production of a national 1:1,000,000-scale hydrography dataset for the United States: Feature selection, simplification, and refinement. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2009.
Find full textVeech, Joseph A. Habitat Ecology and Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198829287.001.0001.
Full textLutz, Wolfgang, William P. Butz, and Samir KC, eds. World Population & Human Capital in the Twenty-First Century. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198813422.001.0001.
Full textBook chapters on the topic "Dataset selection"
Pfeuffer, Simon, Daniel Wehner, and Raed Bouslama. "Managing Uncertainties in LCA Dataset Selection." In Sustainable Design and Manufacturing 2019, 73–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9271-9_7.
Full textSahipov, Ilya, Alexey Zabashta, and Andrey Filchenkov. "Stabilization of Dataset Matrix Form for Classification Dataset Generation and Algorithm Selection." In Lecture Notes in Computer Science, 66–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62365-4_7.
Full textRefenes, Apostolos N. "ConSTrainer: A Generic Toolkit for Connectionist Dataset Selection." In Konnektionismus in Artificial Intelligence und Kognitionsforschung, 163–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76070-9_17.
Full textReggiani, Claudio, Yann-Aël Le Borgne, and Gianluca Bontempi. "Feature Selection in High-Dimensional Dataset Using MapReduce." In Communications in Computer and Information Science, 101–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76892-2_8.
Full textRughbeer, Yastil, Anban W. Pillay, and Edgar Jembere. "Dataset Selection for Transfer Learning in Information Retrieval." In Artificial Intelligence Research, 53–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66151-9_4.
Full textXu, Xian, and Aidong Zhang. "Boost Feature Subset Selection: A New Gene Selection Algorithm for Microarray Dataset." In Computational Science – ICCS 2006, 670–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11758525_91.
Full textShinmura, Shuichi. "Matroska Feature-Selection Method for Microarray Dataset (Method 2)." In New Theory of Discriminant Analysis After R. Fisher, 163–89. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2164-0_8.
Full textPati, Soumen Kumar, and Asit Kumar Das. "Gene Selection and Classification Rule Generation for Microarray Dataset." In Advances in Computing and Information Technology, 73–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31600-5_8.
Full textGupta, Shelly, Shailendra Narayan Singh, and Parsid Kumar Jain. "Feature Selection on Public Maternal Healthcare Dataset for Classification." In Lecture Notes in Networks and Systems, 573–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9712-1_49.
Full textChowdhury, Kuntal, Debasis Chaudhuri, and Arup Kumar Pal. "Optimal Number of Seed Point Selection Algorithm of Unknown Dataset." In Proceedings of 3rd International Conference on Computer Vision and Image Processing, 257–69. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9291-8_21.
Full textConference papers on the topic "Dataset selection"
Dittman, David J., Taghi Khoshgoftaar, Randall Wald, and Amri Napolitano. "Gene selection stability's dependence on dataset difficulty." In 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI). IEEE, 2013. http://dx.doi.org/10.1109/iri.2013.6642491.
Full textZargari, Shahrzad, and Dave Voorhis. "Feature Selection in the Corrected KDD-dataset." In 2012 Third International Conference on Emerging Intelligent Data and Web Technologies (EIDWT). IEEE, 2012. http://dx.doi.org/10.1109/eidwt.2012.10.
Full textPaiva, Antonio R. C. "Information-theoretic dataset selection for fast kernel learning." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966107.
Full textBudhraja, Karan Kumar, and Tim Oates. "Dataset Selection for Controlling Swarms by Visual Demonstration." In 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017. http://dx.doi.org/10.1109/icdmw.2017.128.
Full textSiegert, Ingo, Ronald Bock, Andreas Wendemuth, and Bogdan Vlasenko. "Exploring dataset similarities using PCA-based feature selection." In 2015 International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 2015. http://dx.doi.org/10.1109/acii.2015.7344600.
Full textKhode, Disha, and Antara Bhattacharya. "A New Feature Selection Algorithm for DNA Dataset." In Third International Conference on Advances in Computer Science and Application - CSA 2014 and Third International Conference on Advances in Signal Processing and Communication - SPC 2014. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_p013.
Full textKhode, Disha, and Antara Bhattacharya. "A New Feature Selection Algorithm for DNA Dataset." In Third International Conference on Advances in Computer Science and Application - CSA 2014 and Third International Conference on Advances in Signal Processing and Communication - SPC 2014. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-2579-6_p013.
Full textZiheng, Liu. "Comparison of Feature Selection Methods on Arrhythmia Dataset." In IPMV 2021: 2021 3rd International Conference on Image Processing and Machine Vision. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469951.3469963.
Full textTchaye-Kondi, Jude, Yanlong Zhai, and Liehuang Zhu. "A New Hashing based Nearest Neighbors Selection Technique for Big Datasets." In 11th International Conference on Computer Science and Information Technology (CCSIT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110708.
Full textSingh, Raman, Harish Kumar, and R. K. Singla. "Analysis of Feature Selection Techniques for Network Traffic Dataset." In 2013 International Conference on Machine Intelligence and Research Advancement (ICMIRA). IEEE, 2013. http://dx.doi.org/10.1109/icmira.2013.15.
Full textReports on the topic "Dataset selection"
McNabb, Kyle, Annalena Oppel, and Daniel Chachu. Government Revenue Dataset (2021): source selection. UNU-WIDER, August 2021. http://dx.doi.org/10.35188/unu-wider/wtn/2021-10.
Full textGradín, Carlos. WIID Companion (March 2021): data selection. UNU-WIDER, March 2021. http://dx.doi.org/10.35188/unu-wider/wtn/2021-4.
Full textPradhananga, Saurav, Arthur Lutz, Archana Shrestha, Indira Kadel, Bikash Nepal, and Santosh Nepal. Selection and downscaling of general circulation model datasets and extreme climate indices analysis - Manual. International Centre for Integrated Mountain Development (ICIMOD), 2020. http://dx.doi.org/10.53055/icimod.4.
Full textGradín, Carlos. WIID Companion (March 2021): global income distribution. UNU-WIDER, March 2021. http://dx.doi.org/10.35188/unu-wider/wtn/2021-6.
Full textGradín, Carlos. WIID Companion (March 2021): integrated and standardized series. UNU-WIDER, March 2021. http://dx.doi.org/10.35188/unu-wider/wtn/2021-5.
Full textBustelo, Monserrat, Suzanne Duryea, Claudia Piras, Breno Sampaio, Giuseppe Trevisan, and Mariana Viollaz. The Gender Pay Gap in Brazil: It Starts with College Students' Choice of Major. Inter-American Development Bank, January 2021. http://dx.doi.org/10.18235/0003011.
Full textNajafi, Farzaneh, Gamaleldin F. Elsayed, Robin Cao, Eftychios Pnevmatikakis, Peter E. Latham, John P. Cunningham, and Anne K. Churchland. Dataset from "Farzaneh Najafi, Gamaleldin F Elsayed, Robin Cao, Eftychios Pnevmatikakis, Peter E. Latham, John P Cunningham, Anne K Churchland (bioRxiv, 2018); Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning.”. Cold Spring Harbor Laboratory, February 2019. http://dx.doi.org/10.14224/1.37693.
Full textde Caritat, Patrice, Brent McInnes, and Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Full text