Academic literature on the topic 'Dataset shift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dataset shift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dataset shift"
Sharet, Nir, and Ilan Shimshoni. "Analyzing Data Changes using Mean Shift Clustering." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 07 (2016): 1650016. http://dx.doi.org/10.1142/s0218001416500166.
Full textAdams, Niall. "Dataset Shift in Machine Learning." Journal of the Royal Statistical Society: Series A (Statistics in Society) 173, no. 1 (2010): 274. http://dx.doi.org/10.1111/j.1467-985x.2009.00624_10.x.
Full textGuo, Lin Lawrence, Stephen R. Pfohl, Jason Fries, et al. "Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine." Applied Clinical Informatics 12, no. 04 (2021): 808–15. http://dx.doi.org/10.1055/s-0041-1735184.
Full textHe, Zhiqiang. "ECG Heartbeat Classification Under Dataset Shift." Journal of Intelligent Medicine and Healthcare 1, no. 2 (2022): 79–89. http://dx.doi.org/10.32604/jimh.2022.036624.
Full textKim, Doyoung, Inwoong Lee, Dohyung Kim, and Sanghoon Lee. "Action Recognition Using Close-Up of Maximum Activation and ETRI-Activity3D LivingLab Dataset." Sensors 21, no. 20 (2021): 6774. http://dx.doi.org/10.3390/s21206774.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (April 7, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.1.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (June 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.2.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (October 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.3.
Full textPrasad, Pulicherla Siva, and Senthilrajan Agniraj. "Cross-Domain Adaptation Techniques for Robust Plant Disease Detection: A DANN-CORAL Hybrid Approach." International Journal of Experimental Research and Review 42 (August 30, 2024): 68–84. http://dx.doi.org/10.52756/ijerr.2024.v42.007.
Full textYu, Jiongchi, Xiaofei Xie, Qiang Hu, et al. "CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift." Proceedings of the ACM on Software Engineering 2, FSE (2025): 1687–709. https://doi.org/10.1145/3729346.
Full textDissertations / Theses on the topic "Dataset shift"
Wang, Fulton. "Addressing two issues in machine learning : interpretability and dataset shift." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122870.
Full textGogolashvili, Davit. "Global and local Kernel methods for dataset shift, scalable inference and optimization." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS363v2.pdf.
Full textSpooner, Amy. "Developing a minimum dataset for nursing team leader handover in the intensive care unit: a prospective interventional study." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382227.
Full textFonseca, Eduardo. "Training sound event classifiers using different types of supervision." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/673067.
Full textSarr, Jean Michel Amath. "Étude de l’augmentation de données pour la robustesse des réseaux de neurones profonds." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS072.
Full textVanck, Thomas [Verfasser], Jochen [Akademischer Betreuer] Garcke, Jochen [Gutachter] Garcke, and Reinhold [Gutachter] Schneider. "New importance sampling based algorithms for compensating dataset shifts / Thomas Vanck ; Gutachter: Jochen Garcke, Reinhold Schneider ; Betreuer: Jochen Garcke." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156012562/34.
Full textLuus, Francois Pierre Sarel. "Dataset shift in land-use classification for optical remote sensing." Thesis, 2016. http://hdl.handle.net/2263/56246.
Full textBooks on the topic "Dataset shift"
Quiñonero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, eds. Dataset Shift in Machine Learning. The MIT Press, 2008. http://dx.doi.org/10.7551/mitpress/9780262170055.001.0001.
Full textSchwaighofer, Anton, Joaquin Quiñonero-Candela, Masashi Sugiyama, and Neil D. Lawrence. Dataset Shift in Machine Learning. MIT Press, 2018.
Find full textSchwaighofer, Anton, Masashi Sugiyama, Neil D. Lawrence, and Joaquin Quinonero-Candela. Dataset Shift in Machine Learning. MIT Press, 2022.
Find full textOgorzalek, Thomas K. The Cities on the Hill. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190668877.003.0006.
Full textCroissant, Aurel, David Kuehn, and Tanja Eschenauer-Engler. Dictators' Endgames. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198916673.001.0001.
Full textSteier, Joshua, and Erik Van Hegewald. Understanding the Limits of Artificial Intelligence for Warfighters: Distributional Shift in Cybersecurity Datasets. RAND Corporation, The, 2024.
Find full textLoyle, Cyanne E. Transitional Justice During Armed Conflict. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228637.013.218.
Full textParnell, Tamsin. Constructing Brexit Britain. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350436978.
Full textPoplack, Shana. Borrowing. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190256388.001.0001.
Full textBook chapters on the topic "Dataset shift"
da Silva, Camilla, Jed Nisenson, and Jeff Boisvert. "Comparing and Detecting Stationarity and Dataset Shift." In Springer Proceedings in Earth and Environmental Sciences. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19845-8_3.
Full textQian, Hongyi, Baohui Wang, Ping Ma, Lei Peng, Songfeng Gao, and You Song. "Managing Dataset Shift by Adversarial Validation for Credit Scoring." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20862-1_35.
Full textEsuli, Andrea, Alessandro Fabris, Alejandro Moreo, and Fabrizio Sebastiani. "The Case for Quantification." In The Information Retrieval Series. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20467-8_1.
Full textXia, Tong, Jing Han, and Cecilia Mascolo. "Benchmarking Uncertainty Quantification on Biosignal Classification Tasks Under Dataset Shift." In Multimodal AI in Healthcare. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14771-5_25.
Full textLeyendecker, Lars, Shobhit Agarwal, Thorben Werner, Maximilian Motz, and Robert H. Schmitt. "A Study on Data Augmentation Techniques for Visual Defect Detection in Manufacturing." In Bildverarbeitung in der Automation. Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-66769-9_6.
Full textRaza, Haider, Girijesh Prasad, and Yuhua Li. "EWMA Based Two-Stage Dataset Shift-Detection in Non-stationary Environments." In IFIP Advances in Information and Communication Technology. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41142-7_63.
Full textJin, Qiao, Haoyang Ding, Linfeng Li, Haitao Huang, Lei Wang, and Jun Yan. "Tackling MeSH Indexing Dataset Shift with Time-Aware Concept Embedding Learning." In Database Systems for Advanced Applications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59419-0_29.
Full textJensen, Patrick Møller, Vedrana Andersen Dahl, Rebecca Engberg, Carsten Gundlach, Hans Marin Kjer, and Anders Bjorholm Dahl. "BugNIST a Large Volumetric Dataset for Object Detection Under Domain Shift." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73411-3_2.
Full textZhu, Calvin, Michael D. Noseworthy, and Thomas E. Doyle. "Addressing Dataset Shift for Trustworthy Deep Learning Diagnostic Ultrasound Decision Support." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67868-8_7.
Full textPeracchio, Lorenzo, Giovanna Nicora, Tommaso Mario Buonocore, Riccardo Bellazzi, and Enea Parimbelli. "Do You Trust Your Model Explanations? An Analysis of XAI Performance Under Dataset Shift." In Artificial Intelligence in Medicine. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66535-6_28.
Full textConference papers on the topic "Dataset shift"
Fingas, Daniel. "Coating Conductance Characterization Using Trenchless Crossing Data." In CONFERENCE 2024. AMPP, 2024. https://doi.org/10.5006/c2024-21037.
Full textWade, Daniel, Ramon Lugos, Lance Antolick, et al. "Machine Learning Algorithms for HUMS Improvement on Rotorcraft Components." In Vertical Flight Society 71st Annual Forum & Technology Display. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10196.
Full textFu, Rao, Shaoxing Cui, and Xiaoyi Feng. "Mixed Global and Local Attention Alleviates Domain Shift Between Terahertz Image Datasets." In 2024 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2024. https://doi.org/10.1109/icspcc62635.2024.10770373.
Full textUshio, Asahi, Francesco Barbieri, Vitor Sousa, Leonardo Neves, and Jose Camacho-Collados. "Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts." In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-main.25.
Full textMaggio, Simona, Victor Bouvier, and Leo Dreyfus-Schmidt. "Performance Prediction Under Dataset Shift." In 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9956676.
Full textTuia, Devis, Edoardo Pasolli, and William J. Emery. "Dataset shift adaptation with active queries." In 2011 Joint Urban Remote Sensing Event (JURSE). IEEE, 2011. http://dx.doi.org/10.1109/jurse.2011.5764734.
Full textSpence, David, Christopher Inskip, Novi Quadrianto, and David Weir. "Quantification under class-conditional dataset shift." In ASONAM '19: International Conference on Advances in Social Networks Analysis and Mining. ACM, 2019. http://dx.doi.org/10.1145/3341161.3342948.
Full textSrey, Ponhvoan, Yuhui Zhang, and Takafumi Kanamori. "Open-World Learning Under Dataset Shift." In 2024 IEEE Conference on Artificial Intelligence (CAI). IEEE, 2024. http://dx.doi.org/10.1109/cai59869.2024.00188.
Full textTakahashi, Carla C., Luiz C. B. Torres, and Antonio P. Braga. "Gabriel Graph Transductive Approach to Dataset Shift." In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2019. http://dx.doi.org/10.1109/codit.2019.8820327.
Full textBrugman, Simon, Tomas Sostak, Pradyot Patil, and Max Baak. "popmon: Analysis Package for Dataset Shift Detection." In Python in Science Conference. SciPy, 2022. http://dx.doi.org/10.25080/majora-212e5952-01d.
Full textReports on the topic "Dataset shift"
Johnson, Logan, and Paulina Murray. Continued Long-Term Ecological Monitoring in a Northern Red Oak-White Pine Research Forest Over Five Decades. Forest Ecosystem Monitoring Cooperative, 2024. http://dx.doi.org/10.18125/de7078.
Full textSeema, Seema, Andreas Theocharis, and Andreas Kassler. Evaluate Temporal and Spatio-Temporal Correlations for Different Prosumers Using Solar Power Generation Time Series Dataset. Karlstad University, 2024. http://dx.doi.org/10.59217/yjll7238.
Full textKopacki, Lucas, Jennifer Pontius, Anthony D’Amato, and James Duncan. CLIMATE CHANGE EXPOSURE MAPPING FOR NORTHEASTERN TREE SPECIES. Forest Ecosystem Monitoring Cooperative, 2024. http://dx.doi.org/10.18125/24wwx7.
Full textMascagni, Giulia, and Fabrizio Santoro. The Tax Side of the Pandemic: Compliance Shifts and Funding for Recovery in Rwanda. Institute of Development Studies, 2021. http://dx.doi.org/10.19088/ictd.2021.019.
Full textPérez Pérez, Jorge, and José G. Nuño-Ledesma. Workers, Workplaces, Sorting, and Wage Dispersion in Mexico. Banco de México, 2024. http://dx.doi.org/10.36095/banxico/di.2024.06.
Full textClark, Andrew E., Angela Greulich, and Hippolyte d’Albis. The age U-shape in Europe: the protective role of partnership. Verlag der Österreichischen Akademie der Wissenschaften, 2021. http://dx.doi.org/10.1553/populationyearbook2021.res3.1.
Full textChan, Melvin Chee Yeen, and Jennifer Pei-Ling Tan. Secondary quantitative analysis of core research data (2004-2010): A multilevel study of academic achievement and 21st century competencies. National Institute of Education, Nanyang Technological University, Singapore, 2020. https://doi.org/10.32658/10497/22604.
Full textRosenblat, Sruly, Tim O'Reilly, and Ilan Strauss. Beyond Public Access in LLM Pre-Training Data: Non-public book content in OpenAI’s Models. AI Disclosures Project, Social Science Research Council, 2025. https://doi.org/10.35650/aidp.4111.d.2025.
Full textTait, Emma, Pia Ruisi-Besares, Matthias Sirch, Alyx Belisle, Jennifer Pontius, and Elissa Schuett. Technical Report: Monitoring and Communicating Changes in Disturbance Regimes (Version 1.0). Forest Ecosystem Monitoring Cooperative, 2021. http://dx.doi.org/10.18125/cc0a0l.
Full textCalcagno, Juan Carlos, and Mariana Alfonso. Minority Enrollments at Public Universities of Diverse Selectivity Levels under Different Admission Regimes: The Case of Texas. Inter-American Development Bank, 2007. http://dx.doi.org/10.18235/0010878.
Full text