Academic literature on the topic 'Davey-Stewartson equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Davey-Stewartson equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Davey-Stewartson equations"

1

Sall?, M. A. "The Davey-Stewartson equations." Journal of Mathematical Sciences 68, no. 2 (1994): 265–70. http://dx.doi.org/10.1007/bf01249340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mhlanga, Isaiah Elvis, and Chaudry Masood Khalique. "Exact Solutions of Generalized Boussinesq-Burgers Equations and (2+1)-Dimensional Davey-Stewartson Equations." Journal of Applied Mathematics 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/389017.

Full text
Abstract:
We study two coupled systems of nonlinear partial differential equations, namely, generalized Boussinesq-Burgers equations and (2+1)-dimensional Davey-Stewartson equations. The Lie symmetry method is utilized to obtain exact solutions of the generalized Boussinesq-Burgers equations. The travelling wave hypothesis approach is used to find exact solutions of the (2+1)-dimensional Davey-Stewartson equations.
APA, Harvard, Vancouver, ISO, and other styles
3

Nakao, Takenobu, and Miki Wadati. "Higher-order Davey-Stewartson equations." Chaos, Solitons & Fractals 4, no. 5 (1994): 701–8. http://dx.doi.org/10.1016/0960-0779(94)90078-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BRUNELLI, J. C., and ASHOK DAS. "DAVEY-STEWARTSON EQUATION FROM A ZERO CURVATURE AND A SELF-DUALITY CONDITION." Modern Physics Letters A 09, no. 14 (1994): 1267–72. http://dx.doi.org/10.1142/s0217732394001088.

Full text
Abstract:
We derive the two equations of Davey-Stewartson type from a zero curvature condition associated with SL(2, ℝ) in (2+1) dimensions. We show in general how a (2+1)dimensional zero curvature condition can be obtained from the self-duality condition in (3+3) dimensions and show in particular how the Davey-Stewartson equations can be obtained from the self-duality condition associated with SL(2, ℝ) in (3+3) dimensions.
APA, Harvard, Vancouver, ISO, and other styles
5

Güngör, F., and Ö. Aykanat. "The generalized Davey-Stewartson equations, its Kac-Moody-Virasoro symmetry algebra and relation to Davey-Stewartson equations." Journal of Mathematical Physics 47, no. 1 (2006): 013510. http://dx.doi.org/10.1063/1.2162147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Yun-Mei, Ying-Hui He, and Yao Long. "The Simplest Equation Method and Its Application for Solving the Nonlinear NLSE, KGZ, GDS, DS, and GZ Equations." Journal of Applied Mathematics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/960798.

Full text
Abstract:
A good idea of finding the exact solutions of the nonlinear evolution equations is introduced. The idea is that the exact solutions of the elliptic-like equations are derived using the simplest equation method and the modified simplest equation method, and then the exact solutions of a class of nonlinear evolution equations which can be converted to the elliptic-like equation using travelling wave reduction are obtained. For example, the perturbed nonlinear Schrödinger’s equation (NLSE), the Klein-Gordon-Zakharov (KGZ) system, the generalized Davey-Stewartson (GDS) equations, the Davey-Stewart
APA, Harvard, Vancouver, ISO, and other styles
7

Yurov, A. V. "Bäcklund-Schlesinger transformations for Davey-Stewartson equations." Theoretical and Mathematical Physics 109, no. 3 (1996): 1508–14. http://dx.doi.org/10.1007/bf02073867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gilson, C. R., and S. R. Macfarlane. "Dromion solutions of noncommutative Davey–Stewartson equations." Journal of Physics A: Mathematical and Theoretical 42, no. 23 (2009): 235202. http://dx.doi.org/10.1088/1751-8113/42/23/235202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jun, Zhang, Guo Bo-ling, and Shen Shou-feng. "Homoclinic orbits of the Davey-Stewartson equations." Applied Mathematics and Mechanics 26, no. 2 (2005): 139–41. http://dx.doi.org/10.1007/bf02438234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yali, Liquan Mei, and Rui Li. "Galerkin methods for the Davey–Stewartson equations." Applied Mathematics and Computation 328 (July 2018): 144–61. http://dx.doi.org/10.1016/j.amc.2018.01.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Davey-Stewartson equations"

1

Assainova, Olga. "On the semiclassical limit of the defocusing Davey-Stewartson II equation." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK075/document.

Full text
Abstract:
La méthode de diffusion inverse est la plus efficace dans la théorie des systèmes intégrables. Introduite dans les années soixantes, d'importants résultats ont été obtenus pour les problèmes de dimension 1+1 et notamment sur l'interaction de solitons. Depuis quelques années, l'intérêt est porté sur des problèmes de dimensions supérieures comme les équations de Davey-Sterwartson, une généralisation de l'équation intégrable de Schrödinger cubique non linéaire en dimension 1+1. Des études numériques en limite semi-classique de l'équation de Davey-Stewartson II (DSII) défocalisant, font apparaître
APA, Harvard, Vancouver, ISO, and other styles
2

Obrecht, Caroline. "Sur l'approximation modulationnelle du problème des ondes de surface : Consistance et existence de solutions pour les systèmes de Benney-Roskes / Davey-Stewartson à dispersion exacte." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112121/document.

Full text
Abstract:
Cette thèse s'inscrit dans l'étude des modèles asymptotiques aux équations des ondes de surface dans le régime modulationnel. Le problème des ondes de surface consiste à décrire le mouvement - sous l'influence de la gravitation et éventuellement de tension de surface - d'un fluide dans un domaine délimité par la surface libre du fluide et par un fond fixe. Dans l'étude de ce problème, on s'intéresse en particulier aux ondes se propageant à la surface du fluide.Dans le régime modulationnel, on considère l'évolution des ondes de surface sous forme de paquets d'ondes de faible amplitude se propag
APA, Harvard, Vancouver, ISO, and other styles
3

Roidot, Kristelle. "Etude numérique d'équations aux dérivées partielles non linéaires et dispersives." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00692549.

Full text
Abstract:
L'analyse numérique se développe en un outil puissant dans l'étude des équations aux dérivées partielles (EDPs), permettant d'illustrer des théorèmes existants et de trouver des conjectures. En utilisant des techniques sophistiquées, des questions apparaissant inaccessibles avant, comme des oscillations rapides ou un blow-up des solutions, peuvent être étudiées. Des oscillations rapides dans les solutions sont observées dans des EDPs dispersives sans dissipation ou les solutions des EDPs correspondantes sans dispersion ont des chocs. Pour résoudre numériquement ces oscillations, l'application
APA, Harvard, Vancouver, ISO, and other styles
4

White, Peter W. "The Davey-Stewartson equations : a numerical study /." 1994. http://hdl.handle.net/1957/16812.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Davey-Stewartson equations"

1

White, Peter W. The Davey-Stewartson equations: A numerical study. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, Peter W. The Davey-Stewartson equations: A numerical study. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Davey-Stewartson equations"

1

Xu, Xiaoping. "Nonlinear Schrödinger and Davey–Stewartson Equations." In Algebraic Approaches to Partial Differential Equations. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36874-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pempinelli, F. "Localized Soliton Solutions for the Davey-Stewartson I and Davey-Stewartson III Equations." In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2082-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ablowitz, M. J., C. L. Shultz, and S. V. Manakov. "On the Boundary Conditions of the Davey-Stewartson Equation." In Nonlinear Evolution Equations and Dynamical Systems. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van der Linden, J. "Solutions of the Davey-Stewartson Equation with Non-Zero Boundary Condition." In Nonlinear Evolution Equations and Dynamical Systems. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76172-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hood, S., and P. A. Clarkson. "Symmetry Reductions and Exact Solutions of the Davey-Stewartson System." In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2082-1_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ismael, Hajar F., and Hasan Bulut. "On the Solitary Wave Solutions to the (2+1)-Dimensional Davey-Stewartson Equations." In 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019). Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39112-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Santini, P. M., and A. S. Fokas. "The Initial-Boundary Value Problem for the Davey-Stewartson 1 Equation; How to Generate and Drive Localized Coherent Structures in Multidimensions." In Partially Intergrable Evolution Equations in Physics. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0591-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pempinelli, F., M. Boiti, L. Martina, O. K. Pashaev, and D. Perrone. "New Soliton Solutions for the Davey-Stewartson Equation." In Solitons and Chaos. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84570-3_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boiti, M., J. Leon, and F. Pempinelli. "On the Spectral Theory of the Davey-Stewartson Equation." In Inverse Problems and Theoretical Imaging. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75298-8_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Y., and D. W. McLaughlin. "Homoclinic Orbits and Bäcklund Transformations for the Doubly Periodic Davey-Stewartson Equation." In Springer Series in Nonlinear Dynamics. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77769-1_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Davey-Stewartson equations"

1

Liang, Yong, and M. Reza Alam. "Three Dimensional Fully Localized Waves on Ice-Covered Ocean." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11557.

Full text
Abstract:
We have recently shown [1] that fully-localized three-dimensional wave envelopes (so-called dromions) can exist and propagate on the surface of ice-covered waters. Here we show that the inertia of the ice can play an important role in the size, direction and speed of propagation of these structures. We use multiple-scale perturbation technique to derive governing equations for the weakly nonlinear envelope of monochromatic waves propagating over the ice-covered seas. We show that the governing equations simplify to a coupled set of one equation for the envelope amplitude and one equation for t
APA, Harvard, Vancouver, ISO, and other styles
2

CARBONARO, P. "THE DAVEY-STEWARTSON EQUATION IN A COMPLEX PLASMA." In Proceedings of the 15th Conference on WASCOM 2009. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814317429_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!