Contents
Academic literature on the topic 'Daylight autonomy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Daylight autonomy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Daylight autonomy"
Gábrová, Lenka. "Comparison between Dynamic and Static Metrics for Daylight Evaluation in the Case of Obstructed Buildings." Applied Mechanics and Materials 861 (December 2016): 477–84. http://dx.doi.org/10.4028/www.scientific.net/amm.861.477.
Full textAcosta, Ignacio, Miguel Ángel Campano, Samuel Domínguez, and Jessica Fernández-Agüera. "Minimum Daylight Autonomy: A New Concept to Link Daylight Dynamic Metrics with Daylight Factors." LEUKOS 15, no. 4 (February 2019): 251–69. http://dx.doi.org/10.1080/15502724.2018.1564673.
Full textDogan, T., and YC Park. "Testing the residential daylight score: Comparing climate-based daylighting metrics for 2444 individual dwelling units in temperate climates." Lighting Research & Technology 52, no. 8 (June 17, 2020): 991–1008. http://dx.doi.org/10.1177/1477153520924838.
Full textKeskin, Zeynep, Yunhao Chen, and Steve Fotios. "Daylight And Seating Preference In Open-Plan Library Spaces." International Journal of Sustainable Lighting 17 (June 2, 2017): 12–20. http://dx.doi.org/10.26607/ijsl.v17i0.12.
Full textNourkojouri, Hanieh, Nastaran Seyed Shafavi, Mohammad Tahsildoost, and Zahra Sadat Zomorodian. "Development of a Machine-Learning Framework for Overall Daylight and Visual Comfort Assessment in Early Design Stages." Journal of Daylighting 8, no. 2 (November 29, 2021): 270–83. http://dx.doi.org/10.15627/jd.2021.21.
Full textSolvang, Helene, Tobias Kristiansen, Ruth Marie Bottheim, and Wolfgang Kampel. "Comparison and development of daylight simulation software – A case study." E3S Web of Conferences 172 (2020): 19001. http://dx.doi.org/10.1051/e3sconf/202017219001.
Full textBaglivo, Cristina, Marina Bonomolo, and Paolo Maria Congedo. "Modeling of Light Pipes for the Optimal Disposition in Buildings." Energies 12, no. 22 (November 13, 2019): 4323. http://dx.doi.org/10.3390/en12224323.
Full textRaimondi, Alberto, Daniele Santucci, Simone Bevilacqua, and Alessandro Corso. "Daylight Autonomy as a Driver for Office Building Retrofitting." Energy Procedia 96 (September 2016): 180–89. http://dx.doi.org/10.1016/j.egypro.2016.09.119.
Full textBian, Yu, and Yuan Ma. "Analysis of daylight metrics of side-lit room in Canton, south China: A comparison between daylight autonomy and daylight factor." Energy and Buildings 138 (March 2017): 347–54. http://dx.doi.org/10.1016/j.enbuild.2016.12.059.
Full textMavridou, Theodora, and Lambros Doulos. "Evaluation of Different Roof Types Concerning Daylight in Industrial Buildings during the Initial Design Phase: Methodology and Case Study." Buildings 9, no. 7 (July 15, 2019): 170. http://dx.doi.org/10.3390/buildings9070170.
Full textDissertations / Theses on the topic "Daylight autonomy"
Erlendsson, Örn. "Daylight Optimization - A Parametric Study of Atrium Design : Early Stage Design Guidelines of Atria for Optimization of Daylight Autonomy." Thesis, KTH, Installations- och energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146292.
Full textSrinivasan, Barani Dharan. "Why do considerable number of Swedish workplaces lack daylight? Effects of obstruction angles in achieving required daylight in Swedish workplaces." Thesis, KTH, Ljusdesign, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280023.
Full textVerma, Anurag. "The effect of an atrium and building orientation on the daylighting and cooling load of an office building. : An early stage study." Thesis, KTH, Installations- och energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219590.
Full textБурмака, Віталій Олександрович, and V. O. Burmaka. "Підвищення енергоефективності суміщеного освітлення будівель з врахуванням енергетичного балансу приміщень." Diss., Тернопільський національний технічний університет ім. Івана Пулюя, 2020. http://elartu.tntu.edu.ua/handle/lib/32352.
Full textThe thesis deals with the economy of electric energy, which is spent on room lighting, because of increasing interests of daylight. Design decisions should be based on the cost-effectiveness of introducing light into the room. Light guide systems are useful for introducing light into rooms located deep in the building. The use of a clerestory and mansard translucent structures of external wall envelope (TSEWE) is possible only on the top floors of building, and side walls TSEWE can be installed in all rooms, located above the ground. From the above it follows that the building facades TSEWE is practically expedient, since they are durable, not labor-consuming to maintain and universal in terms of limitations on the place of their installation. As a result of the re-search, there has been obtained an analytical expression for determination of the absolute and relative glazed area of TSEWE of any configuration. Since the thermal resistance of TSEWE different parts has a different value, it became impossible to develop analytical expressions for obtaining the relative and absolute areas of glazing, profile and foam filling of the TSEWE of a rectangular configuration. The next parameter characterizing the energy efficiency of the daylight use is DF, that indicating the ratio of the illumination at the selected point in comparison with lighting from the outside. The effect of geometrical parameters of rooms and window openings on the value of the daylight factor (DF) in the reference point (RP) on the work surface (WS) is considered in the article. This is important, as while using a window to floor ratio (WFR) and a window to wall ratio (WWR), there is a significant error. Therefore, there are objective difficulties with the unification of the results of studies on the effectiveness of natural sidelight, which are due to the influence of the size of the room on the DF value in the RP on the WS. The use of the above-mentioned coefficients to evaluate the efficiency of lateral natural light results in the fact that, at constant value of the coefficient, the value of the DF may differ several times. This is because the area of the window opening does not correspond to the area of glazing through which daylight passes into the room. The area of the room does not correspond to the area of the work surface on which it is necessary to provide prescribed by regulations illumination level, and the dimensions of both the room and the work surface are not taken into account in the LF or in the WWR at all. As a result of the analysis of the DF value dependences on the rooms size and the TSEWE area, it is proposed to use a composite room glazing index (CRGI). It takes into account not only the glazing area of the TSEWE but also the dimensions and area of the work surface. This makes it possible to use the results of studies on the effectiveness of daylighting without binding them to the dimensions of a room. As a result of the approximation of this dependence, an equation describing the relationship between these quantities has been developed. An algorithm that takes into account both the width of the opaque portion of the TSEWE and its proportion has been developed to determine the area of the TSEWE at which the required DF value in the reference point is provided. The rational use of daylight can significantly reduce the cost of electricity for artificial lighting. The purpose of this research was to investigate the parameters of translucent structures of building envelope, and the value of daylight factor, for which maxi-mum efficiency of daylight usage is achieved in office rooms. The study analyzes the dependence of the office rooms daylight autonomy on the DF value for four European cities. The specific daylight autonomy (h/(year∙m2)) of office rooms was found. It was proved, that regardless of the rooms size, the maximum specific daylight autonomy (at illumination of 300 lx, that is prescribed by regulations), with lateral daylight, occurs when the DF is in the range of 1.7% to 1.9%. Maxima – at 1.8%. At illumination of 500 lx, the maximum specific daylight autonomy will occur at a daylight factor range of 2.6% to 3.0%. Maxima – at 2.8%. A study of the parameters affecting the efficiency of lateral daylight was made, especially against the background of the total use of modern energy-efficient windows, has not lost its relevance. Issues addressed of the influence of orientation, thermal resistance, and the coefficient of relative penetration of solar radiation (CRPSR) of the translucent structures of exterior wall envelope (TSEWE) on total heat loss during the heating period and its in-flow in the cooling period was studied. The aim of this study directed to determine the effect of both thermal resistance and CRPSR on the electricity consumption to compensate for heat losses and heat revenues through the TSEWE. As a result of research received the dependence of electricity consumption on the heating and cooling of the office space, from the CRPSR, the thermal resistance for different orientation of the TSEWE for the city of Ternopil. The obtained results made it possible to determine the conditions under which energy savings will be achieved, taking into account the reduction in its consumption for artificial lighting. Based on the obtained results of determination of the daylight autonomy of and existing expressions for determining heat loss and gain of the solar radiation through the TSEWE in the heating period, and excess heat supply in the cooling period for Ternopil, obtained expressions allowed one to determine the parameters for which the installation of the TSEWE allows to reduce the rooms total energy consumption. As a result of the above calculations, inequalities are obtained for determining the conditions for the positive effect of the TSEWE properties on the rooms total energy balance for Ternopol, for TSEWE of various orientations. The next stage of the work was the study of the economic and energy efficiency of the artificial lighting control systems, with the help of astronomical relays and motion sensors, by various types of light sources for the for stairwells (stair landings and staircases) of multistory residential buildings. The analysis of the residents’ monthly movement intensity of the 9-story residential buildings through the buildings entrance, doorways, and apartment doors was carried out. The economic and energy efficiency of use the artificial lighting control systems with an astronomical relays and motion sensors with different types of light sources was determined. Regardless of the light sources` type, the astronomical relay’s use leads to reduction in the electricity consumption of artificial lighting in 43.31% – 50.52%. Moreover, the motion sensors’ use on stairwells leads to a significant reduction in electrical energy consumption: in a case of halogen lamps – by 97.73%, compact fluorescent lamps – by 95.27%, light-emitting diodes lamps – by 93.98%. For the first time, the data of 9-story residential buildings inhabitants’ traffic intensity through the first-floor doorway for the Ternopil city, Ukraine has been carried out. From the economic efficiency point of view, the situation is somewhat different. For the considered need for the establishment of nine motion sensors, the economic effect of their use is significantly reduced. So, when the astronomical relay is installed, the cost of ownership decreases for 10 years: from IL – by 50.04%, HL – by 50.05%, CFL – by 46.38% and LED – by 43.98%, whereas when using motion sensors with IL – by 86.70%, HL – by 84.40%, CFL – by 46.62% and LED – by 15.70%. The scientific novelty of the study lies in the scientific substantiation and solution of an important scientific and technical problem of increasing the adequacy of energy efficiency assessment of lateral daylight based on an overnight account of many factors that significantly affect its qualitative and quantitative parameters during operation. The following scientific results were obtained: 1. It is obtained the analytical expressions for determining the relative and absolute values of the TSEWE glazing profile and foam filling area, of a rectangular shape TSEWE with any predetermined TSEWE coordination index, which makes it possible to determine the optimal, from the maximum glazing area point of view, their sizes. 2. The expression for the consolidated index of the glazing of a room is obtained, which makes it possible to determine the area of the TSEWE at which the prescribed by regulations value of the DF is provided without being tied to certain dimensions of the room. This expression takes into account the area of glazing the TSEWE, the WS area, as well as the depth and width of the room. An algorithm for calculating the window sill area has been developed to provide a prescribed by regulations DF value in non-shadowed rooms of arbitrary dimensions. This algorithm allows determining the area of a single-section TSEWE at which the prescribed by regulations value of the DF in the RP and, consequently, throughout the WS will be ensured 3. A technique for determining the TSEWE area at which the required DF value is provided has been developed. 4. It has been proven that for different sizes of rooms, the nature of the DF change relative to proportions is not synchronous. As can be seen from the obtained results, on the same intervals of proportions and with the same sizes of rooms, the DF increases, whereas in other cases it decreases. 5. As a result of the research, it was found that the highest efficiency of daylight usage in office rooms lighting, with prescribed by regulations illumination of 300 lx, will have a DF values range of 1.7% to 1.9%. For a value of 1.8% – it is maxima. At a illumination of 500 lx, maximum efficiency of TSBE usage is observed, with DF values of 2.6% to 3.0% and maxima at 2.8%. 6. The expression is obtained for determining the daylight autonomy, for a prescribed by regulations illumination value of 300 lx, for rooms of various sizes with different TSEWE areas. 7. It was found, that using of motion sensors on stairwells leads to a significant reduction in electricity consumption: when using IL – in 97.95, HL – in 97.73%, CFL – in 95.27%, LED – in 93.98%, while regardless of the type of the LS, using the astronomical relay leads to a reduction in the electricity consumption of artificial lighting in 49.31% - 50.58%. The practical significance of the results: based on the results of experimental re-search, theoretical generalizations and developments, decide whether there are problems that have important applied value: 1. Obtained results help calculate the minimum glazing area of the TSEWE to provide a prescribed by regulations DF value with a standard deviation of 0.894, based solely on the dimensions of the room. This is a prerequisite for using the obtained results in the development of buildings normative documents. 2. Expressions are obtained for determining the daylight autonomy, for 300 lx illumination value, for rooms of various sizes with different TSEWE areas. These expres sions make it possible to determine the duration of the provision of prescribed by regulations illumination in office rooms. It makes possible to calculate the energy efficiency of side daylighting using. 3. It was obtained the analytical expressions of determination of the parameters of the TSEWE, at which the positive effect on the energy balance of the room is blamed. 4. It has been conducted the experimentally determined the residents’ movement intensity through the doorway of the 9-story buildings first floor for three-hour time intervals from 7:00 to 22:00 and a 9-hour interval from 22:00 to 07:00 during the year. The obtained data make it possible to determine the energy and economic efficiency of using the artificial lighting control system with motion sensors.