Academic literature on the topic 'DC-AC Converters'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DC-AC Converters.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "DC-AC Converters"

1

Perera, Lasantha Bernard. "Multi Level Reinjection ac/dc Converters for HVDC." Thesis, University of Canterbury. Electrical and Computer Engineering, 2006. http://hdl.handle.net/10092/1085.

Full text
Abstract:
A new concept, the multi level voltage/current reinjection ac/dc conversion, is described in this thesis. Novel voltage and current source converter configurations, based on voltage and current reinjection concepts are proposed. These converter configurations are thoroughly analyzed in their ac and dc system sides. The fundamentals of the reinjection concept is discussed briefly, which lead to the derivation of the ideal reinjection waveform for complete harmonic cancellation and approximations for practical implementation. The concept of multi level voltage reinjection VSC is demonstrated through two types of configurations, based on standard 12-pulse parallel and series connected VSC modified with reinjection bridges and transformers. Firing control strategies and steady state waveform analysis are presented and verified by EMTDC simulations. The multi level current reinjection CSC is also described using two configurations based on standard 12-pulse parallel and series connected CSC modified with associated reinjection circuitry. Firing control strategies and steady state waveform analysis are presented and verified by EMTDC simulations. Taking the advantage of zero current switching in the main bridge valves, achieved through multi level current reinjection, an advanced multi level current reinjection scheme, consisting thyristor main bridges and self-commutated reinjection circuitry is proposed. This hybrid scheme effectively incorporates self-commutated capability into a conventional thyristor converter. The ability of the main bridge valves to commutate without the assistance of a turn-off pulse or line commutating voltage under the zero current condition is explained and verified by EMTDC simulations. Finally, the applications of the MLCR-CSC are discussed in terms of a back to back HVDC link and a long distance HVDC transmission system. The power and control structures and closed loop control strategies are presented. Dynamic simulation is carried out on PSCAD/EMTDC to demonstrate the two systems ability to respond to varying active and reactive power operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Badawy, Ahmed Darwish. "Current source dc-dc and dc-ac converters with continuous energy flow." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25915.

Full text
Abstract:
This work considers current sourced powerelectronic converters. The thesis classifies and presents several new single-phase and three-phase differential-mode current source inverters that evolve from the basic dc-dc converter topologies. The switched, large-signal, and small-signal models of these converters are presented, and used to develop control strategies for the proposed differential-mode inverters, considering their inversion and rectification modes. The viability of each differential mode inverter/rectifier is validated using simulations and experimentation. The performances of different proposed buck, boost, and buck-boost current source inverters are discussed and compared in terms of efficiency, total harmonic distortion, input current ripple, capacitor stresses, and control complexity. Some of the proposed current source inverters offer buck-boost capability (can operate with output voltage less or greater than the input dc voltage), which is suited for grid-connected operation of single-stage three-phase buck-boost inverters. Phase variables and synchronous frame controllers are used to provide satisfactory inverter operation in inversion and rectification modes. The inherent low-order harmonic currents in the input and output of the proposed converters (predominantly, negative sequence 2nd order harmonic) are supressed using PI and PR controllers. Also, interleaved carriers are used to reduce the input current ripple of the three-phase inverters. The proposed converters can operate over a full control range from 0 to unity power factor, with power flow in both directions (unlike the conventional six-pulse current inverter). Additionally, a nonlinear control strategy, sliding mode control, is implemented with to achieve faster dynamic inverter response during faults as well as elimination of dccurrent injection into ac grid. This is necessary during unbalanced operation. Operation of single-phase differential-mode buck-boost inverters is presented, including suppression of the 2nd order harmonic in the input dc current by two methods. In the first, active suppression of the 2nd harmonic uses a power electronic circuit. The second method manipulates the modulating signal in combination with a relatively large capacitor to trap the oscillating power that causes the 2nd order harmonic to appear input dc link current. The two single-phase harmonic suppression approaches are compared.
APA, Harvard, Vancouver, ISO, and other styles
3

Jassim, Bassim M. H. "Active current sharing control schemes for parallel connected AC/DC/AC converters." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/3086.

Full text
Abstract:
The parallel operation of voltage fed converters can be used in many applications, such as aircraft, aerospace, and wind turbines, to increase the current handling capability, system efficiency, flexibility, and reliability through providing redundancy. Also, the maintenance of low power parallel connected units is lower than one high power unit. Significant performance improvement can be attained with parallel converters employing interleaving techniques where small passive components can be used due to harmonic cancellation. In spite of the advantages offered by parallel connected converters, the circulating current problem is still a major concern. The term circulating current describes the uneven current sharing between the units. This circulating current leads to: current distortion, unbalanced operation, which possibly damages the converters, and a reduction in overall system performance. Therefore, current sharing control methods become necessary to limit the circulating current in a parallel connected converter system. The work in this thesis proposes four active current sharing control schemes for two equally rated, directly paralleled, AC/DC/AC converters. The first scheme is referred to as a “time sharing approach,” and it divides the operation time between the converters. Accordingly, in the scheme inter-module reactors become unnecessary, as these are normally employed at the output of each converter. However, this approach can only be used with a limited number of parallel connected units. To avoid this limitation, three other current sharing control schemes are proposed. Moreover, these three schemes can be adopted with any pulse width modulation (PWM) strategy and can be easily extended to three or more parallel connected units since they employ a modular architecture. The proposed current sharing control methods are employed in two applications: a current controller for three-phase RL load and an open loop V/f speed control for a three-phase induction motor. The performance of the proposed methods is verified in both transient and steady state conditions using numerical simulation and experimental testing.
APA, Harvard, Vancouver, ISO, and other styles
4

Santiago-González, Juan Antonio. "Miniaturization of Ac-Dc power converters for grid interface." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120371.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 185-189).<br>In this thesis we present a two-stage ac/dc grid-connected converter for computer applications. Also known as off-line power supplies, these converters have to meet various demanding specifications such as a wide input voltage range (typically 0-376 V), large voltage step down (typical output voltages range from 12-48 V), harmonic current limits and galvanic isolation. The focus of this work is in the reduction in volume of ac/dc converters while keeping efficiency constant or improving it, which is challenging to achieve while meeting all the specifications. The thesis breaks down the converter in subsystems and explores architectural and topological trade-offs, modeling, component selection and control methods. The performance of each individual subsystem is experimentally verified. The first stage of the converter is a step-down power factor correction (PFC) converter. This stage interacts with the grid and draws the necessary ac power from the line and rectifies it. Following the PFC is a capacitor bank, which is used to both buffer the ac power from the line and to provide hold-up energy to the output. The capacitor selection process is detailed in the thesis. The second stage of the converter provides isolation and regulation to the output. Two different approaches to the second stage converter are presented: using commercially available, "plug and play" converters and developing a custom converter. The full system is evaluated with both solutions and is compared to other state of the art converters. The final prototype achieves an efficiency of 95.33% at full power (250 W) and 230 Vac input, and a power density of 35 W/in3.<br>by Juan Antonio Santiago-González.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Shen, Jian. "GTO Pulsed Width Modulated (PWM) converter for railway traction applications." Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, Glenn Warwick Jan. "Hybrid simulation of AC-DC power systems." Thesis, University of Canterbury. Electrical and Computer Engineering, 1995. http://hdl.handle.net/10092/1176.

Full text
Abstract:
Transient stability studies are primarily concerned with the generator response of ac power systems and use only steady state type equations to model HVdc converter terminals. These equations are adequate for small disturbances at the converter terminals but cannot accurately represent a converters behaviour during, and through its recovery of, a significant transient disturbance. A detailed three phase electromagnetic analysis is necessary to describe the converters correct behaviour. This thesis describes an accurate and effective hybrid method combining these two types of studies, for analyzing dynamically fast devices such as HVdc converters within ac power systems. Firstly, conventional techniques are reviewed for both a transient stability analysis of power systems and for an electromagnetic transient analysis of HVdc converters. This review deals in particular with the two programs that constitute the hybrid developed in this thesis. Various techniques are then examined to efficiently and accurately pass the dynamic effects of an HVdc link to an ac system stability study, and the dynamic effects of an ac system to a detailed HVdc link study. An optimal solution is derived to maximise the inherent advantages of a hybrid. Finally, the hybrid is applied to a test system and its effectiveness in performing its task is shown.
APA, Harvard, Vancouver, ISO, and other styles
7

Haryani, Nidhi. "Zero Voltage Switching (ZVS) Turn-on Triangular Current Mode (TCM) Control for AC/DC and DC/AC Converters." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96397.

Full text
Abstract:
One of the greatest technological challenges of the world today is reducing the size and weight of the existing products to make them portable. Specifically, in electric vehicles such as electric cars, UAVs and aero planes, the size of battery chargers and inverters needs to be reduced so as to make space for more parts in these vehicles. Electromagnetic Interference (EMI) filters take up a more than 80 % of these power converters, the size of these filters can be reduced by pushing the switching frequency higher. High frequency operation (> 300 kHz) leads to a size in reduction of EMI filters though it also leads to an increase in switching losses thus compromising on efficiency. Thus, soft switching becomes necessary to reduce the losses, adding more electrical components to the converter to achieve soft switching is a common method. However, it increases the physical complexity of the system. Hence, advanced control methods are adopted for today's power converters that enable soft switching for devices specifically ZVS turn-on as the turn-off losses of next generation WBG devices are negligible. Thus, the goal of this research is to discover novel switching algorithms for soft turn-on. The state-of the-art control methods namely CRM and TCM achieve soft turn-on by enabling bi-directional current such that the anti-parallel body diode starts conducting before the device is turned on. CRM and TCM result in variable switching frequency which leads to asynchronous operation in multi-phase and multi-converter systems. Hence, TCM is modified in this dissertation to achieve constant switching frequency, as the goal of this research is to be able to achieve ZVS turn-on for a three-phase converter. Further, Triangular Current Mode (TCM) to achieve soft switching and phase synchronization for three-phase two-level converters is proposed. It is shown how soft switching and sinusoidal currents can be achieved by operating the phases in a combination of discontinuous conduction mode (DCM), TCM and clamped mode. The proposed scheme can achieve soft switching ZVS turn-on for all the three phases. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kW with a density of 110 W/in3. The discussion of TCM in current literature is limited to unity power factor assumption, however this limits the algorithm's adoption in real world applications. It is shown how proposed TCM algorithm can be extended to accommodate phase shift with all the three phases operating in a combination of DCM+TCM+Clamped modes of operation. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kVA with a density of 110 W/in3. TCM operation results in 33 % higher rms current which leads to higher conduction losses, as WBG devices have lower on-resistance, these devices are the ideal candidates for TCM operation, hence to accurately obtain the device parameters, a detailed device characterization is performed. Further, proposed TCM+DCM+Clamped control algorithm is extended to three-level topologies, the control is modified to extract the advantage of reduced Common Mode Voltage (CMV) switching states of the three-level topology, the switching frequency can thus be pushed to 3 times higher as compared to state-of-the-art SVPWM control while maintaining close to 99 % efficiency. Two switching schemes are presented and both of them have a very small switching frequency variation (6%) as compared to state-of-the-art methods with >200% switching frequency variation.<br>Doctor of Philosophy<br>Power supplies are at the heart of today's advanced technological systems like aero planes, UAVs, electrical cars, uninterruptible power supplies (UPS), smart grids etc. These performance driven systems have high requirements for the power conversion stage in terms of efficiency, density and reliability. With the growing demand of reduction in size for electromechanical and electronic systems, it is highly desirable to reduce the size of the power supplies and power converters while maintaining high efficiency. High density is achieved by pushing the switching frequency higher to reduce the size of the magnetics. High switching frequency leads to higher losses if conventional hard switching methods are used, this drives the need for soft switching methods without adding to the physical complexity of the system. This dissertation proposes novel soft switching techniques to improve the performance and density of AC/DC and DC/AC converters at high switching frequency without increasing the component count. The concept and the features of this new proposed control scheme, along with the comparison of its benefits as compared to conventional control methodologies, have been presented in detail in different chapters of this dissertation.
APA, Harvard, Vancouver, ISO, and other styles
8

Babayan-Aghan, Vahik. "Investigation into different types of single-phase AC/DC convertors." Thesis, Loughborough University, 1995. https://dspace.lboro.ac.uk/2134/7063.

Full text
Abstract:
The work detailed in the thesis compares the performance of single-phase thyristor bridge converters under different control strategies; considering in particular the efficiency, ac side power factor and harmonic content of the current and voltage waveforms. Extensive practical investigations were performed, in which, analogue and digital control circuits were developed to provide the drive signals necessary for a converter to operate in the different control modes for: a) A series -connected fully-controlled double thyristor bridge (used mainly in traction applications) operating under sequence control and; b) A fully controlled single-bridge operating under sequence and conventional control. A novel pulse-width modulation control strategy was developed for the single-bridge converter, using gate turn-off thyristors as the switching elements, whereby output voltage control is obtained by variation of the modulation index. Turn-on and turn-off signals for the power devices were obtained using an analogue control circuit. The advantages and disadvantages of this switching strategy compared with conventional and sequence control were studied, and results clearly showed that an improved input power factor and lower supply current and load voltage harmonics were all obtained. Mathematical models for single and double bridge converters operating under sequence and conventional control were developed using tensor techniques. Using these models, computer programmes were written in Fortran 77 on the University mainframe computer, to assemble automatically and solve the network equations as the converter topology changes. In addition, analytical models were also developed on the assumption that the load current is completely smooth. However, such an assumption is not justifiable with ac-to-dc converters and consequently a novel technique was developed to include the load current ripple in calculating the supply current harmonics. The results obtained are compared with both the computed and experimental ones.
APA, Harvard, Vancouver, ISO, and other styles
9

Norrga, Staffan. "On soft-switching isolated AC/DC converters without auxiliary circuit /." Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gitau, Michael N. "Optimal PWM switching strategy for single-phase AC-DC converters." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/7205.

Full text
Abstract:
The thesis describes an optimal selective harmonic elimination strategy suitable for singlephase AC-DC converter-fed traction drives. The objective is to eliminate low-order supply current harmonics, including those injected into the supply due to load-side current ripple. Other advantages that the switching strategy has to offer over phase-control include improved supply power factor, reduced VA consumption for a given demand speed and load, reduced torque and speed ripple and smaller armature circuit smoothing inductance. The effect of field current boost on the dynamic response of the drive is also described. It is shown that field boost helps to reduce the speed rise-time by increasing the electromagnetic torque available during acceleration periods. Closed-loop control of a 4-quadrant DC drive is described and a comparison made between the performance of PID-control and pseudo-derivative feedback control. It is shown that pseudo-derivative feedback control has several advantages to offer, amongst which are ease of tuning of the controller gains and a superior performance following load torque disturbances. A laboratory size drive system was designed and built, and used to validate simulation predictions for both the switching strategy and pseudo-derivative feedback control. A microcontroller based hardware implementation of both the switching strategy and a digital pseudo-derivative feedback controller was adopted, with the switching strategy being implemented using an off-line approach of precalculating the switching angles and storing these in look-up tables. The armature voltage controller comprises a dual-converter employing IGBTs as switching devices. The use of IGBTs allows higher switching frequencies at significant power levels than would be possible if GTOs were used. It also simplifies the gate drive circuit design and minimises the need to use snubber circuits.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography