Dissertations / Theses on the topic 'Dc/ac Power Conversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Dc/ac Power Conversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McClure, Morgan Taylor. "A Modular Architecture for DC-AC Conversion." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1340812711.
Full textWang, Kunrong. "High-Frequency Quasi-Single-Stage (QSS) Isolated AC-DC and DC-AC Power Conversion." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29394.
Full textPh. D.
Chen, Weilun Warren. "Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6905.
Full textSong, Yu Jin. "Analysis and design of high frequency link power conversion systems for fuel cell power conditioning." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2678.
Full textGrant, David. "High power density AC to DC conversion with reduced input current harmonics." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3906.
Full textZhao, Shishuo. "High Frequency Isolated Power Conversion from Medium Voltage AC to Low Voltage DC." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74969.
Full textMaster of Science
Rahim, Nasrudin Abd. "Closed-loop control of a current-mode AC/DC buck converter in 4 quadrant P-Q operation." Thesis, Heriot-Watt University, 1995. http://hdl.handle.net/10399/1342.
Full textKoran, Ahmed Mohammed. "Photovoltaic Source Simulators for Solar Power Conditioning Systems: Design Optimization, Modeling, and Control." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23681.
Full textmatch the closed-loop output impedance of actual PV generator due to the double resonant peaks of the two-stage LC output filter. Design procedures for both control and power-stage circuits are explained. Experimental results verify the steady-state and transient performance of the proposed PV source simulator at around 2.7 kW output.
The design concept of the first simulator system is enhanced with a new type of PV source simulator that incorporates the advantages of both analog and digital based simulators. This simulator is characterized with high power-stage efficiency and fast transient response-time. The proposed system includes a novel three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power-stage topology is highly reliable and efficient. Moreover, the multi-phase dc-dc converter helps improve system transient response-time though producing low output ripple, which makes it adequate for PV source simulators.
The simulator circuitry emulates precisely the static and the dynamic characteristic of actual PV generator under different environmental conditions including different irradiance and temperature levels. Additionally, the system allows for the creation of the partial shading effect on PV characteristic. This dissertation investigates the dynamic performance of commercial and non-commercial solar power conditioning systems using the proposed simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed simulator is verified at different operating conditions. The impedance profile --magnitude and phase- matches the output impedance of actual PV generator closely. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency including the active-front-end rectifier and the converter stages at the maximum power point is 96.4%.
Ph. D.
Steckler, Pierre-Baptiste. "Contribution à la conversion AC/DC en Haute Tension." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI075.
Full textAs Alternating Current (AC) is well suited for most of the production, transmission, and distribution applications, its massive use is easy to understand. However, for over a century, the benefits of High Voltage Direct Current (HVDC) for long-distance energy transmission are well known. To connect both, AC/DC converters are mandatory, whose nature evolves with technological progress. After the problematic induced by HVDC on AC/DC converters is presented, this manuscript is focused on three topologies: Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) and Series Bridge Converter (SBC). They are presented, sized, analyzed thoroughly, and compared in quantitative terms, using original key performance indicators. It appears that MMC and SBC are particularly promising. The conventional control method of the MMC is then presented, and its structural properties are highlighted. A first original control law is presented, with similar performances but less complexity than the state-of-the-art. A second control law, non-linear and based on differential flatness theory, is introduced. It allows a very fast power tracking response while ensuring the global exponential stability of the system. These control laws are tested in simulation, using an average model and a detailed model with 180 sub-modules per arm. The last part is dedicated to the SBC. After a modeling step, some results regarding its structural analysis are presented, and an original control law is introduced. The essential role of the transformer for series converters like the SBC is highlighted. Finally, the performance of the proposed control law is assessed in simulation
Lu, Bing. "Investigation of High-density Integrated Solution for AC/DC Conversion of a Distributed Power System." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28128.
Full textPh. D.
Karamat, Asghar. "High frequency inverter-transformer-cycloconverter system for DC to AC (3-phase) power conversion." Thesis, Brunel University, 1991. http://bura.brunel.ac.uk/handle/2438/5195.
Full textLopez, Santos Oswaldo. "Contribution to the DC-AC conversion in photovoltaic systems : Module oriented converters." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0001/document.
Full textThese last years, a growing interest in power electronic systems has been motivated by the emergence of distributed renewable energy resources and their interconnection with the grid. In this context, the need of low power topologies fed by a few photovoltaic modules avoiding the use of transformers opens the study of special converters and the associated control strategies ensuring stability, reliability and high efficiency. A resulted generic device known in the commercial and scientific literature as “microinverter” or “module integrated converter” performs a plug and play product together with the PV module called an “AC module”.This work is devoted to the study of a transformer-less single-phase double-stage grid-connected microinverter. The proposed topology has a non-isolated high-gain boost type DC-DC converter and a non-isolated buck type DC-AC converter connected in cascade through a DC bus. The DC-DC converter permanently extracts the maximum power of the PV module ensuring at the same time a good performance coping with power changes introduced by the change in the environmental conditions. The DC-AC stage injects the power extracted by the DC-DC stage into the grid ensuring a high level of power quality. The research efforts focus on the involved control functions based on the sliding mode control theory, which leads to a simple implementation with a comprehensive theoretical description validated through simulation and experimental results.After giving the state-of-the-art in the first chapter, the manuscript is divided into four chapters, which are dedicated to the Maximum Power Point Tracking (MPPT), the DC-DC stage and its control, the DC-AC stage and its control and the complete microinverter. A new Extremum Seeking Control (ESC) MPPT algorithm is proposed. The single-switch quadratic boost converter is studied operating as a Loss-Free-Resistor (LFR) obtaining a high DC output voltage level with a safe operation. The full-bridge converter is controlled as a Power Source Inverter (PSI) using a simple sliding-mode based tracking law, regulating the voltage of the DC bus and then ensuring a high power quality level in the grid connection. Finally, the three building blocks are merged to obtain a sliding mode controlled microinverter constituting the main result and contribution of the work
Noon, John Patrick. "Development of a Power Hardware-in-the-Loop Test Bench for Electric Machine and Drive Emulation." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/101498.
Full textMaster of Science
According to the International Energy Agency (IEA), electric power usage is increasing across all sectors, and particularly in the transportation sector [1]. This increase is apparent in one's daily life through the increase of electric vehicles on the road. Power electronics convert electricity in one form to electricity in another form. This conversion of power is playing an increasingly important role in society because examples of this conversion include converting the dc voltage of a battery to ac voltage in an electric car or the conversion of the ac power grid to dc to power a laptop. Additionally, even within an electric car, power converters transform the battery's electric power from a higher dc voltage into lower voltage dc power to supply the entertainment system and into ac power to drive the car's motor. The electrification of the transportation sector is leading to an increase in the amount of electric energy that is being consumed and processed through power electronics. As was illustrated in the previous examples of electric cars, the application of power electronics is very wide and thus requires different testbenches for the many different applications. While some industries are used to power electronics and testing converters, transportation electrification is increasing the number of companies and industries that are using power electronics and electric machines. As industry is shifting towards these new technologies, it is a prime opportunity to change the way that high power testing is done for electric machines and power converters. Traditional testing methods are potentially dangerous and lack the flexibility that is required to test a wide variety of machines and drives. Power hardware-in-the-loop (PHIL) testing presents a safe and adaptable solution to high power testing of electric machines. Traditionally, electric machines were primarily used in heavy industry such as milling, processing, and pumping applications. These applications, and other applications such as an electric motor in a car or plane are called motor drive systems. Regardless of the particular application of the motor drive system, there are generally three parts: a dc source, an inverter, and the electric machine. In most applications, other than cars which have a dc battery, the dc source is a power electronic converter called a rectifier which converts ac electricity from the grid to dc for the motor drive. Next, the motor drive converts the dc electricity from the first stage to a controlled ac output to drive the electric machine. Finally, the electric machine itself is the final piece of the electrical system and converts the electrical energy to mechanical energy which can drive a fan, belt, or axle. The fact that this motor drive system can be generalized and applied to a wide range of applications makes its study particularly interesting. PHIL simplifies testing of these motor drive systems by allowing the inverter to connect directly to a machine emulator which is able to replicate a variety of loads. Furthermore, this work demonstrates the capability of PHIL to emulate both the induction machine load as well as the dc source by considering several rectifier topologies without any significant adjustments from the machine emulation platform. This thesis demonstrates the capabilities of the EGSTON Power Electronics GmbH COMPISO System Unit to emulate motor drive systems to allow for safer, more flexible motor drive system testing. The main goal of this thesis is to demonstrate an accurate PHIL emulation of a induction machine and to provide validation of the emulation results through comparison with an induction machine.
Nathan, Kumaran Saenthan. "A novel DC-DC converter for photovoltaic applications." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288881.
Full textBulhosa, João Paulo Rodrigues. "Controlo de um conversor AC-DC-AC para turbinas eólicas baseadas no PMSG." Master's thesis, Instituto Politécnico de Bragança, Escola Superior de Tecnologia e de Gestão, 2009. http://hdl.handle.net/10198/2062.
Full textGhita, Ion. "Commande avancée de convertisseurs de puissance : application aux réseaux électriques embarqués." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC061.
Full textIn the last few years the question of respecting the environment became a central concern of car users. The electric cars respond to the public trend of reducing the toxic emissions of conventional cars. The success of electric cars depends on the charging of the batteries, charging done either at home or on the public domain.The charging system has to respond to the following performance criteria:-robustness to exterior constraints: network perturbations, line impedance, multiple simultaneous charging of vehicles.-a good efficiency for the power transfer between the received power and the power delivered to the battery.-respecting the power distributer constrains for network harmonic pollution.These three points impose the need for efficient control laws for the battery charger. In this context, the power converters (AC / DC - DC / DC) are key components in electrical chargers , an improved control law of these elements can provide a better level of performance for the charger.This work is a continuation of previous work that resulted in several theses with CIFRE funding, in collaboration with Renault in the context of the electric car (but not only):- From an industrial viewpoint, the doctoral student will draw on the expertise, experience and Renault's test facilities in the field of electric traction in the automotive transport.- From an academic point of view the work will benefit from the skills of the working group 'System control’ within the L2S laboratory, in the field of multi-physics modelling, design of control laws and optimization.Supervision will be provided by:- Emmanuel Godoy (Professor, HDR, advisor) and Dominique Beauvois (professor, co-director) of the academic point of view.- Pedro Kvieska (Engineer, Doctor, Ecole Centrale de Nantes) for industrial management within Renault.Objectives of the thesisThe first two years of thesis work will focus on methodological studies of dedicated control laws. During the third year the work will be focused on the implementation of the proposed architectures and control strategies by: implementing of the new control strategies as prototypes on test bench and on the transferability of the proposed control approaches.A big part of the last year will naturally be devoted to the writing of the doctoral thesis and the preparation of the defence
Wu, Wei. "MICRO-CIRCUIT DIODE FOR ULTRA-LOW-POWER ENERGY HARVESTING." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1415.
Full textLaBella, Thomas Matthew. "A High-Efficiency Hybrid Resonant Microconverter for Photovoltaic Generation Systems." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50526.
Full textPh. D.
Alves, Montanari Allan. "Enhanced instantaneous power theory for control of grid connected voltage sourced converters under unbalanced conditions." IEEE Transactions on Power Electronics, 2017. http://hdl.handle.net/1993/32184.
Full textMay 2017
JÃnior, Josà Ailton LeÃo Barboza. "A Double boost converter with PFC and series/parallel input connection for uninterrupted power system." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16257.
Full textThis work presents a study of a Double Boost AC-DC Converter with power factor correction and dual input voltage operation capability via a selector switch. Such converter can be applied to on-line uninterruptible power supplies with dual voltage input characteristics, this way avoiding the usage of a low frequency autotransformer. The studied structure is composed by two AC-DC classical boost converters, in which for input voltage of 110 Vac both its inputs are connected in parallel, and, for 220 Vac, they are connected in series. The control strategy is based in the average current mode control applied to both converters, in order to provide the power factor correction and output voltage regulation. Simulation and experimental results for 2.4 kW are presented, and so are validate the theoretical study and design. Connecting the inputs in parallel and series, the results were satisfactory and the converter operated properly.
Caballero, Diaz Luis. "Contributions to the design and operation of a multilevel-active-clamped Dc-Ac grid- connected power converter for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/454979.
Full textLa demanda de energía eólica ha incrementado considerablemente durante las últimas décadas. Con el objetivo de satisfacer esta gran demanda, los sistemas de conversión de energía eólica (WECS) son diseñados para operar con mayores niveles de potencia. Actualmente, la topología de convertidor de potencia más atractiva en los WECS comerciales es el convertidor de dos niveles operando en fuente de tensión y configuración back to back (2L-B2B). Sin embargo, esta topología podría tener dificultades para ofrecer un comportamiento aceptable en los WECS de mayor potencia con los dispositivos actuales, incluso aunque su coste sea reducido. En cambio, los convertidores multinivel pueden incrementar la potencia sin necesidad de incrementar la corriente ni el voltaje de bloqueo de los dispositivos, permitiendo conseguir un diseño adecuado para los WECS de mayor potencia usando los dispositivos actuales. Dentro de los convertidores multinivel, la topología 3L-NPC tiene una gran aceptación en el mercado eólico, siendo una solución común en los WECS de mayor potencia. Sin embargo, su gran inconveniente es que la potencia pérdida es distribuida de una manera desequilibrada entre los dispositivos. De este modo, la potencia de salida se ve limitada por el comportamiento térmico del dispositivo más estresado a nivel térmico, el cual depende del punto de operación. De esta manera, la topología 3L-ANPC fue propuesta con el objetivo de mejorar la distribución de las pérdidas del convertidor entre los dispositivos. El convertidor 3L-ANPC proporciona un camino totalmente controlable para la conexión del punto neutro. Por lo tanto, el convertidor 3LANPC es capaz de ofrecer cierto grado de libertad para distribuir la potencia pérdida entre los dispositivos. Como consecuencia, y comparado con el convertidor 3L-NPC, el comportamiento térmico es mucho más equilibrado y la potencia de salida puede ser incrementada. Sin embargo, todavía hay margen de mejora para alcanzar mejores prestaciones en el comportamiento del convertidor 3L-ANPC. A raíz de la argumentación anterior, la tesis propuesta define nuevas guías de diseño para el convertidor 3L-ANPC cc-ca conectado a la red. Las guías de diseño están focalizadas en mejorar la fiabilidad y el comportamiento eléctrico del convertidor, respetando la tendencia del estado del arte actual para definir una solución factible para la próxima generación de WECS. Las contribuciones de la tesis están basadas en definir una configuración de dispositivos mejorada y una secuencia de conmutación novedosa, evitando concentrar grandes pérdidas de conducción y de conmutación en un mismo dispositivo. Las contribuciones permiten seleccionar el dispositivo más adecuado para cada posición del convertidor, consiguiendo una mejor eficiencia y una distribución de pérdidas y comportamiento térmico más equilibrado. Además, también permiten operar con potencias más elevadas, y mejorar la fiabilidad del convertidor.
Gonçalves, Amilcar Flamarion Querubini. "Sistema de geração distribuída controlado em tensão e potência e utilizado de forma isolada ou conectada à rede de distribuição." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-28012016-080537/.
Full textThis thesis presents a control strategy to manage the power delivered to or absorbed from the grid, independently of the local load characteristics. To achieve this goal, a voltage source inverter (VSI) will work as a distributed generation system (DG) or according to active filter. The VSI will be controlled by means of a double cascade classical controller, in which the inner loop is used to stabilize the VSI output current and the outer loop controls the DG terminal voltage. To improve the response of the VSI, resonant filters are placed in parallel. Additionally, resonant filter dynamic responses are enhanced through the use of a proper discretization method, in which the coefficients are changed dynamically by means of the synchronism frequency produced by the phase-locked loop (PLL) algorithm. This study also exhibits two closed-loop structures: one to control the reactive power through the grid by adjusting the DG voltage amplitude, and the other to control the active power by modifying the angle of displacement between the grid and the DG voltages. Both power control structures operate adequately in decoupled operation mode, so that one has a faster dynamic response than the other. To verify all statements proposed in this thesis, a set of simulations and experimental results are presented.
Silva, Luciano de Souza da Costa e. [UNESP]. "Retificador boost entrelaçado com elevado fator de potência e sem ponte de diodos." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/87091.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Este trabalho propõe um conversor CA-CC, modulado por largura de pulso (PWM), de elevado fator de potência, dotado de um controle variável da razão cíclica. O estágio de potência do conversor pré-regulador do fator de potência (PFP) proposto é composto por múltiplas células entrelaçadas. A integração das técnicas de entrelaçamento (interleaving) à técnica de eliminação da ponte retificadora da entrada (bridgeless) busca diminuir as perdas de energia e distribuir os esforços de corrente nos semicondutores da estrutura conversora de potência. O levantamento bibliográfico foi realizado com intuito de analisar resultados e características de conversores CA-CC baseados em estruturas PFP boost modificadas. Comparações foram realizadas levando em consideração as características de distorção harmônica, fator de potência, complexidade do circuito de controle, eficiência energética, esforços nos semicondutores de potência e emissão de interferência eletromagnética (IEM). O conversor proposto é então equacionado e os valores dos componentes acumuladores de energia determinados são escritos como função das especificações de projeto. Análises gráficas indicam o comportamento da distorção harmônica e do fator de potência da estrutura atuando em diferentes níveis de tensão. Simulações são realizadas como forma de comprovar a eficácia do sistema conversor no que se refere à correção do fator de potência e à distribuição dos esforços nos semicondutores de potência. Os principais resultados estão dispostos em tabelas comparativas, que indicam um fator de potência praticamente unitário. O sistema de regulação da tensão saída, testado via simulação computacional, apresenta resultados que demonstram boa dinâmica na resposta transitória e erro nulo a regime frente às variações de carga e afundamentos na...
This paper proposes an AC-DC converter, pulse width modulated (PWM) with high power factor and a variable duty cycle control. The power factor preregulator (PFP) converter proposed is composed of multiple bridgeless boost interleaved cells. The integration of these techniques allows a reduction in the energy losses and sharing the stress in power semiconductors. The literature review was performed in order to analyze the results and characteristics of AC-DC converters based on modified PFC boost structures. Comparisons were made taking into account the characteristics of harmonic distortion, power factor, complexity of control circuitry, energy efficiency, current stress in power semiconductors, and emission of electromagnetic interference (EMI). The proposed converter is mathematically equated and the values of the reactive components are written as a function of design specifications. Graphical analysis indicates the behavior of harmonic distortion and power factor of the structure at different voltage levels. Simulations are performed in order to demonstrate compliance of the converter system with respect to the power factor correction and distribution efforts in the power semiconductors. The main results are arranged in comparative tables which indicate power factor very closed to unity. The control system applied to the converter was evaluated through the computer simulations which showed good dynamics at transient response and null steady-state error faced to load variations and sags in the voltage supply. The prototype for the power stage implemented in the laboratory operated according... (Complete abstract click electronic access below)
de, Groot Martijn. "Development of a Plug and Play Solution for Commercial Off-grid Solar Refrigeration : Presenting a Battery Supported System Providing the AC Power Required to run a Coolfinity 300L Commercial Refrigerator." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302991.
Full textI denna rapport diskuteras design och testning av ett plug and play - system för att köra Coolfinity’s Icevolt 300 -kylskåp på solpaneler. Ett sådant system kommer att kunna tillhandahålla tillräcklig kylning för mat och dryck i områden med opålitlig eller ingen tillgänglig el. För närvarande är sådana system endast tillgängliga för små kylboxar, medan Icevolt 300 är ett stort stående kommersiellt kylskåp med en glasdörr. Detta är idealiskt för butiker, kaféer och mindre distributionscentra. Systemet innehåller en laddningsregulator för solpaneler, ett batteri och en växelriktare. Först beräknas komponentspecifikationerna och nödvändiga solpaneler. Utifrån dessa beräkningar utvärderas systemkomponenter. Ett anpassat hölje är utformat för att passa komponenterna. En OEM väljs och den valda växelriktaren testas utförligt. Testerna visar att växelriktaren inte har några problem att starta Icevolt 300 -kompressorn med reducerad spänning. Många batteritillverkare utvärderas och prover från tre olika tillverkare erhålls och testas. Prover från en av tillverkarna matchar specifikationerna och har inga problem med kompressorns höga starteffekt. Ett fullständigt systemtest bevisar att systemet fungerar, men indikerar också att den ursprungliga uppskattningen av kylförbrukningen var för låg. Det betyder att fler PV -paneler behövs än vad som ursprungligen beräknades. Med informationen från testerna byggs en ny modell som uppskattar prestandan mer exakt. Ett program skrivs för att uppskatta prestanda och bestämma vilka PV -paneler som krävs. Pilotserien för höljet visade att många förbättringar behöver göras vad beträffar höljets design, särskilt vad gäller kostnaden. Ett test förbereds i Mali men inga testdata har erhållits ännu. Baserat på det utförda arbetet skulle det rekommenderas att undersöka direkta DC -kylskåp istället för att fortsätta vägen för PV till AC-system.
Alves, rodrigues Luis Gabriel. "Design and characterization of a three-phase current source inverter using 1.7kV SiC power devices for photovoltaic applications." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT030.
Full textClassically, the energy conversion architecture found in photovoltaic (PV) power plants comprises a multitude of solar arrays delivering a maximum voltage of 1kV followed by a step-up chopper connected to a three-phase voltage source inverter. This two-stage conversion system (DC/DC + DC/AC) is then connected to the MV grid through a LV/MV transformer. In order to simplify the PV systems, this research work focuses on the study and implementation of a DC/AC topology employing a single conversion stage: the three-phase current source inverter (CSI). Although relatively simple, the CSI presents as major drawback the conduction losses. To deal with this problem, wide-bandgap silicon carbide (SiC) semiconductors are used, which allows to efficiently convert energy (η> 98.5%) while keeping a relatively high switching frequency (several tens of kHz). Nonetheless, since the available power semiconductor modules on the market are not compatible with the CSI, a novel 1.7kV SiC-based module is developed in the context of the thesis. Thus, the dynamic characterization of the new SiC device is carried out and serves as a basis for the design of a 60kW Current Source Inverter prototype. Finally, the inverter’s semiconductor efficiency is evaluated through a calorimetric method, confirming the ability of the topology to operate at higher switching frequencies. At the present time, little research has been conducted on the CSI implementation with SiC devices. The originality of this work lies mainly in the design, characterization and implementation of the new SiC power module adapted to this well-known inverter topology
Dbeiss, Mouhannad. "Mission Profile-Based Accelerated Ageing Tests of SiC MOSFET and Si IGBT Power Modules in DC/AC Photovoltaic Inverters." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT020/document.
Full textIn the case of photovoltaic installations, the DC/AC inverter has the highest failure rate, and the anticipation of its breakdowns is still difficult, while few studies have been done on the reliability of this type of inverter. The aim of this PhD is to propose tools and methods to study the ageing of power modules in this type of application, by focusing on ageing phenomena related to thermo-mechanical aspects. As a general rule, the accelerated ageing of power modules is carried out under aggravated conditions of current (Active Cycling) or temperature (Passive Cycling) in order to accelerate the ageing process. Unfortunately, when applying this type of accelerated ageing tests, some failure mechanisms that do not occur in the real application could be observed, while inversely, other mechanisms that usually occur could not be recreated. The first part of the PhD focuses on the implementation of an accelerated ageing method of the semiconductor devices inside photovoltaic inverters. This is accomplished by analyzing the mission profiles of the inverter’s output current and ambient temperature, extracted over several years from photovoltaic power plants located in the south of France. These profiles are used to study photovoltaic current dynamics, and are introduced into numerical models to estimate losses and junction temperature variations of semiconductors used in inverters, using the cycle counting algorithm “Rainflow”. This method is then performed in two experimental test benches. In the first one, the devices under test are IGBT modules, where the accelerated ageing profile designed is implemented using the opposition method. Moreover, an in-situ setup for monitoring ageing indicators (thermal impedance and dynamic resistance) is also proposed and evaluated. The second bench is devoted to study the ageing of SiC MOSFET power modules. The accelerated ageing test is carried out under the same conditions as for the IGBT modules with more monitored electrical indicators, but this time by disconnecting the semiconductor devices from the inverter. The results obtained allowed to determine several potential ageing indicators of IGBTs and SiC MOSFETs used in a photovoltaic inverter
Silva, Luciano de Souza da Costa e. "Retificador boost entrelaçado com elevado fator de potência e sem ponte de diodos /." Ilha Solteira : [s.n.], 2011. http://hdl.handle.net/11449/87091.
Full textBanca: Guilherme de Azevedo e Melo
Banca: Jurandir de Oliveira Soares
Resumo: Este trabalho propõe um conversor CA-CC, modulado por largura de pulso (PWM), de elevado fator de potência, dotado de um controle variável da razão cíclica. O estágio de potência do conversor pré-regulador do fator de potência (PFP) proposto é composto por múltiplas células entrelaçadas. A integração das técnicas de entrelaçamento (interleaving) à técnica de eliminação da ponte retificadora da entrada (bridgeless) busca diminuir as perdas de energia e distribuir os esforços de corrente nos semicondutores da estrutura conversora de potência. O levantamento bibliográfico foi realizado com intuito de analisar resultados e características de conversores CA-CC baseados em estruturas PFP boost modificadas. Comparações foram realizadas levando em consideração as características de distorção harmônica, fator de potência, complexidade do circuito de controle, eficiência energética, esforços nos semicondutores de potência e emissão de interferência eletromagnética (IEM). O conversor proposto é então equacionado e os valores dos componentes acumuladores de energia determinados são escritos como função das especificações de projeto. Análises gráficas indicam o comportamento da distorção harmônica e do fator de potência da estrutura atuando em diferentes níveis de tensão. Simulações são realizadas como forma de comprovar a eficácia do sistema conversor no que se refere à correção do fator de potência e à distribuição dos esforços nos semicondutores de potência. Os principais resultados estão dispostos em tabelas comparativas, que indicam um fator de potência praticamente unitário. O sistema de regulação da tensão saída, testado via simulação computacional, apresenta resultados que demonstram boa dinâmica na resposta transitória e erro nulo a regime frente às variações de carga e afundamentos na... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This paper proposes an AC-DC converter, pulse width modulated (PWM) with high power factor and a variable duty cycle control. The power factor preregulator (PFP) converter proposed is composed of multiple bridgeless boost interleaved cells. The integration of these techniques allows a reduction in the energy losses and sharing the stress in power semiconductors. The literature review was performed in order to analyze the results and characteristics of AC-DC converters based on modified PFC boost structures. Comparisons were made taking into account the characteristics of harmonic distortion, power factor, complexity of control circuitry, energy efficiency, current stress in power semiconductors, and emission of electromagnetic interference (EMI). The proposed converter is mathematically equated and the values of the reactive components are written as a function of design specifications. Graphical analysis indicates the behavior of harmonic distortion and power factor of the structure at different voltage levels. Simulations are performed in order to demonstrate compliance of the converter system with respect to the power factor correction and distribution efforts in the power semiconductors. The main results are arranged in comparative tables which indicate power factor very closed to unity. The control system applied to the converter was evaluated through the computer simulations which showed good dynamics at transient response and null steady-state error faced to load variations and sags in the voltage supply. The prototype for the power stage implemented in the laboratory operated according... (Complete abstract click electronic access below)
Mestre
Shah, Vatsal Sonikbhai. "Optimization and Up-Gradation of 3-Phase Half-Bridge Inverter Board." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-173664.
Full textRahimi, Arian. "Design And Implementation Of Low Power Interface Electronics For Vibration-based Electromagnetic Energy Harvesters." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613820/index.pdf.
Full text10 Hz), where most vibrations exits. However, since the generated EM power and voltage is relatively low at low frequencies, high performance interface electronics is required for efficiently transferring the generated power from the harvester to the load to be supplied. The aim of this study is to design low power and efficient interface electronics to convert the low voltage and low power generated signals of the EM energy harvesters to DC to be usable by a real application. The most critical part of such interface electronics is the AC/DC converter, since all the other blocks such as DC/DC converters, power managements units, etc. rely on the rectified voltage generated by this block. Due to this, several state-of-the-art rectifier structures suitable for energy harvesting applications have been studied. Most of the previously proposed rectifiers have low conversion efficiency due to the high voltage drop across the utilized diodes. In this study, two rectifier structures are proposed: one is a new passive rectifier using the Boot Strapping technique for reducing the diode turn-on voltage values
the other structure is a comparator-based ultra low power active rectifier. The proposed structures and some of the previously reported designs have been implemented in X-FAB 0.35 µ
m standard CMOS process. The autonomous energy harvesting systems are then realized by integrating the developed ASICs and the previously proposed EM energy harvester modules developed in our research group, and these systems have been characterized under different electromechanical excitation conditions. In this thesis, five different systems utilizing different circuits and energy harvesting modules have been presented. Among these, the system utilizing the novel Boot Strap Rectifier is implemented within a volume of 21 cm3, and delivers 1.6 V, 80 µ
A (128 µ
W) DC power to a load at a vibration frequency of only 2 Hz and 72 mg peak acceleration. The maximum overall power density of the system operating at 2 Hz is 6.1 µ
W/cm3, which is the highest reported value in the literature at this operation frequency. Also, the operation of a commercially available temperature sensor using the provided power of the energy harvester has been shown. Another system utilizing the comparator-based active rectifier implemented with a volume of 16 cm3, has a dual rail output and is able to drive a 1.46 V, 37 µ
A load with a maximum power density of 6.03 µ
W/cm3, operating at 8 Hz. Furthermore, a signal conditioning system for EM energy harvesting has also been designed and simulated in TSMC 90 nm CMOS process. The proposed ASIC includes a highly efficient AC-DC converter as well as a power processing unit which steps up and regulates the converted DC voltages using an on-chip DC/DC converter and a sub-threshold voltage regulator with an ultra low power management unit. The total power consumption on the totally passive IC is less than 5 µ
W, which makes it suitable for next generation MEMS-based EM energy harvesters. In the frame of this study, high efficiency CMOS rectifier ICs have been designed and tested together with several vibration based EM energy harvester modules. The results show that the best efficiency and power density values have been achieved with the proposed energy harvesting systems, within the low frequency range, to the best of our knowledge. It is also shown that further improvement of the results is possible with the utilization of a more advanced CMOS technology.
Fernandes, Rodolfo Castanho [UNESP]. "Retificador trifásico de 18 pulsos com estágio CC controlado por histerese constante." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/87117.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este trabalho propõe um novo conversor CA-CC trifásico de múltiplos pulsos com estágios CC-CC elevadores de tensão controlados pela técnica de histerese constante. Nesta proposta não são empregados indutores de interfase. A finalidade deste conversor é a de possibilitar um barramento CC regulado para aplicações embarcadas, acionamentos elétricos e afins, sempre com preocupações relacionadas aos aspectos de Qualidade de Energia Elétrica. Assim, a proposta deve apresentar elevado fator de potência, baixa distorção harmônica total de corrente drenada da rede elétrica. Ampla revisão bibliográfica, reunindo as propostas mais recentes da literatura para conversores com mesma finalidade, é feita para que sejam estudadas as estruturas de potência, técnicas de controle, versatilidade, possibilidade de isolamento galvânico e robustez. Em seguida, é detalhada a proposta principal deste trabalho por meio da apresentação do equacionamento do autotransformador, dos estágios elevadores de tensão e da técnica de controle. Esta análise permite que sejam feitas simulações com todos os elementos do conversor CA-CC e então, se desenvolva o projeto físico dos elementos magnéticos e se escolham os componentes eletrônicos do protótipo. O número reduzido de componentes de controle e a simplicidade dos circuitos de potência são grandes atrativos da proposta discutida. Todas as informações relevantes são descritas detalhadamente e, sempre que possível, meios alternativos de solucionar problemas são também apresentados, de forma que fiquem claras as possibilidades de melhoria da técnica empregada. A operação conjunta de todos os elementos mais a técnica de controle foi validada, de maneira que se comprovou, por meio de ensaios, todos os princípios de funcionamento da proposta de conversor CA-CC. Pelos resultados experimentais, obteve-se corrente drenada...
This work proposes a new AC-DC three-phase multipulse converter with DC-DC boost stages and constant hysteresis control. The objective of this converter is to provide a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents high power factor and low harmonic distortions in the currents from the mains. A wide revision is made on other recent proposals found in the scientific literature. Different topologies are compared considering power circuits, control techniques, isolation possibility and robustness. The second chapter presents the details on the main proposal of this work and also the mathematical equations that describe the autotransformer, boost converters and control strategy. Later, simulation results are commented and discussed and the physical design is detailed. The output filter elements, power components and control elements are specified. Experimental results including main waveforms, efficiency, voltage regulation and temperature rise are presented for the autotransformer. The boost stages are also tested and its results are discussed. Finally, the proposed AC-DC converter is tested and the control technique applied to the power stage is validated
TENÓRIO, JÚNIOR Gilberto Alves. "Inversores Fonte Z monofásicos e conversor de dois estágios para sistemas fotovoltaicos sem Transformador." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/19498.
Full textMade available in DSpace on 2017-07-11T12:39:13Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação Mestrado M276 - Gilberto.pdf: 3559945 bytes, checksum: e0e92cec09c72c5a7b8b98260c3b9a8e (MD5) Previous issue date: 2016-03-22
Este trabalho apresenta um estudo comparativo de conversores monofásicos aplicados a sistemas fotovoltaicos sem transformador. Topologias de inversores sem transformador têm menores custos, tamanho e peso. Contudo, a não utilização do transformador pode ser responsável por consideráveis valores de correntes de fuga. A associação em série de vários módulos fotovoltaicos se faz necessária para alcançar o nível de tensão desejado no barramento c.c.. Com o intuito de reduzir o número de módulos fotovoltaicos em série, topologias com característica de elevação de tensão (boost) podem ser utilizadas. Portanto, topologias que possuem estas características e que possam apresentar baixos valores de correntes de fuga devem ser escolhidas para o estudo. As topologias presentes neste trabalho são: o conversor de dois estágios, o inversor fonte Z monofásico com diodo adicional, e o inversor fonte Z de três estados.
This work presents a comparative study of single-phase converters applied to transformerless photovoltaic systems. Topologies of transformerless inverters have lower costs, size and weight. However, not using it may cause considerable amounts of leakage currents. The association in series of several PV modules is needed to achieve the voltage level desired in d.c. bus. In order to reduce the number of photovoltaic modules in series, topologies with voltage boost characteristic can be used. Therefore, topologies that have voltage boost characteristic and can have low leakage current values are chosen for the study. Topologies present in this work are: the two stages single-phase converter, the single-phase Z-source inverter with additional diode, and the single-phase three switch three state Z-source inverter.
Rivas, Juan 1976. "Radio frequency dc-dc power conversion." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38691.
Full textIncludes bibliographical references (p. 197-204).
THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations associated with conventional designs. In particular, the new architectures described here structure the energy processing and control functions of the system in such a manner that high efficiency can be achieved across wide load range while regulating the output. Moreover, these architectures are amenable to circuit designs operating at fixed frequency and duty ratio, considerable easing the circuit design. The thesis also develops new circuit designs that are well suited to these new architectures. As part of this, two new gate drives and control methods are introduced that greatly reduce gating loss at VHF frequencies for fixed frequency, fixed duty ratio operation. One of these gating schemes provides near theoretical minimum loss by resonantly wave shaping the gate voltage to have a trapezoidal drive voltage. This waveshaping approach is then taken a step further, yielding a new class of dc-dc converter that archives a significant reduction in peak switch voltage stress, requires small passive components with low energy storage, and provides the capability for extremely rapid startup and shutdown. This new class of converter is well adapted to the architectures and gate drive methods proposed in the thesis. It is expected that the new architectures and circuit designs introduced here will contribute to the development of power converter having greatly reduced size and improved transient performance.
by Juan Rivas.
Sc.D.
Alepuz, Menéndez Salvador Simón. "Aportació al control del convertidor CC/CA de tres nivells." Doctoral thesis, Universitat Politècnica de Catalunya, 2004. http://hdl.handle.net/10803/6330.
Full textThis dissertation study, propose and carry out the main contributions in the field of three-level inverter control, using the topology Neutral-Point-Clamped, although results can be extended to other topologies and/or number of levels. A procedure for modelling is presented, based on line-switching functions, moving average operator and D-Q transformation. Then, the obtained models in D-Q frame contain complete information about system dynamics. Switching strategy is simple and can be considered as an extension of two-level sinusoidal PWM to three level. The system variables are not controlled by the switching strategy. In this work, all the system variables are controlled by the regulator, including DC-link balance. This control approach is different than the conventional one, where DC-link balance is achieved by means of a proper selection of redundant states in the switching strategy, and the other variables are controlled by the regulator. The regulator is based on the multivariable linear control technique LQR (Linear Quadratic Regulator), in combination with the non-linear adaptive control technique Gain Scheduling. Moreover, a methodology for the calculation of the controller is presented. This controller is versatile, open and adaptable. However, the controller can be built depending on the concrete specifications of each application. The controller is calculated by means of simulation using MatLab-Simulink. The mathematical models based on the switching functions of the converter give the best trade-off between simulation speed and precision. In order to validate the proposed controller, an experimental prototype has been designed and implemented. Experimental results show that the controller is useful and effective for the regulation of different loads and applications, even with non-linear loads, different operation points and variables to control, in steady-state and transitory operation. Dynamic response speed and quality are similar to other control systems in the literature. The DC-link balance control achieved is specially interesting. Furthermore, steady-state error is cancelled due to the robustness of the controller, even though significant deviation of different system parameters are present. The use of Gain-Scheduling in combination with LQR is effective, allowing the calculation of regulators with different control strategies. Good agreement between simulations and experimental results has been found. This result validates simulation models and the design method for the controller, based on simulations.
Alepuz, Menéndez Salvador Simón. "Aportación al control del convertidor CC/CA de tres niveles." Doctoral thesis, Universitat Politècnica de Catalunya, 2004. http://hdl.handle.net/10803/6330.
Full textThis dissertation study, propose and carry out the main contributions in the field of three-level inverter control, using the topology Neutral-Point-Clamped, although results can be extended to other topologies and/or number of levels. A procedure for modelling is presented, based on line-switching functions, moving average operator and D-Q transformation. Then, the obtained models in D-Q frame contain complete information about system dynamics. Switching strategy is simple and can be considered as an extension of two-level sinusoidal PWM to three level. The system variables are not controlled by the switching strategy. In this work, all the system variables are controlled by the regulator, including DC-link balance. This control approach is different than the conventional one, where DC-link balance is achieved by means of a proper selection of redundant states in the switching strategy, and the other variables are controlled by the regulator. The regulator is based on the multivariable linear control technique LQR (Linear Quadratic Regulator), in combination with the non-linear adaptive control technique Gain Scheduling. Moreover, a methodology for the calculation of the controller is presented. This controller is versatile, open and adaptable. However, the controller can be built depending on the concrete specifications of each application. The controller is calculated by means of simulation using MatLab-Simulink. The mathematical models based on the switching functions of the converter give the best trade-off between simulation speed and precision. In order to validate the proposed controller, an experimental prototype has been designed and implemented. Experimental results show that the controller is useful and effective for the regulation of different loads and applications, even with non-linear loads, different operation points and variables to control, in steady-state and transitory operation. Dynamic response speed and quality are similar to other control systems in the literature. The DC-link balance control achieved is specially interesting. Furthermore, steady-state error is cancelled due to the robustness of the controller, even though significant deviation of different system parameters are present. The use of Gain-Scheduling in combination with LQR is effective, allowing the calculation of regulators with different control strategies. Good agreement between simulations and experimental results has been found. This result validates simulation models and the design method for the controller, based on simulations.
Zengel, Jason A. "DC-DC power conversion with galvanic isolation." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FZengel.pdf.
Full textThesis advisor(s): Robert W. Ashton, Todd R. Weatherford. Includes bibliographical references (p. 83-84). Also available online.
Lo, Franco Francesco. "Integrazione di sistemi di accumulo a batterie e impianti fotovoltaici di grande taglia per applicazioni grid-connected." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textWahby, Riad Samir 1981. "Radio frequency rectifiers for DC-DC power conversion." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16690.
Full textIncludes bibliographical references (p. 75-78).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
A significant factor driving the development of power conversion technology is the need to increase performance while reducing size and improving efficiency. In addition, there is a desire to increase the level of integration of DC-DC converters in order to take advantage of the cost and other benefits of batch fabrication techniques. While advances in the power density and integration of DC-DC converters have been realized through development of better active device technologies, much room for improvement remains in the size and fabrication of passive components. To achieve these improvements, a substantial increase in operating frequency is needed, since intermediate energy storage requirements are inversely proportional to frequency. Unfortunately, traditional power conversion techniques are ill-suited to handle this dramatic escalation of switching frequency. New architectures have been proposed which promise to deliver radical performance improvements while potentially reaching microwave frequencies. These new architectures promise to enable substantial miniaturization of DC-DC converters and to permit much a higher degree of integration. The principal effort of this thesis is the development of design and characterization methods for rectifier topologies amenable to use in the new architectures. A computational design approach allowing fast and accurate circuit analysis and synthesis is developed and applied, along with traditional analysis, to two demonstrative rectifier topologies. In addition, the application of coupled magnetic structures for parasitic mitigation is considered. Experimental implementations are investigated to verify analytic and computational results.
by Riad Samir Wahby.
M.Eng.
Liang, Chenchen. "Contribution à l'étude d'une chaîne de conversion d'énergie AC-DC / DC-DC tolérantes aux défauts." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4080/document.
Full textTo answer the context of marine renewable energy exploitation where the access of energy production system is difficult, this thesis deals with the study of a fault tolerant energy conversion chain. Three aspects are investigated: behavior analysis of the topology; output power control; detection and location of faults. The chain involves a five-phase PMSG, a five-leg diode rectifier and a three-interleaved DC-DC Boost converter. Concerning the output power control strategy, a double-loop control is applied on the DC-DC block. Small-signal dynamic models are established. The inner loop is used for controlling the input current of the Boost stage. The outer loop is for the output power. Three types of current controllers are studied and compared. Methods of synchronization for the three-interleaved Boost converter control are proposed. It results that the nonlinear controller, called in French version, the MRC, totally satisfies the desired performances. The control of power, which is then used for the full conversion chain, is tested under different operating modes (health and fault) and is of high performances. Several methods for detecting and locating rectifier’s AC and DC side faults have been developed. Based on the measurements of phase currents or the measurement of the output voltage of the rectifier, AC side faults can be detected and located. DC measurement based fault detection is of low complexity. This method is then extended to the faults of DC-DC block by using its input current
Ficagna, Paulo Canuto dos Santos. "Modelagem, projeto e implementação de um conversor isolado com um único estágio e correção do fator de potência." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/8450.
Full textThis Master Thesis presents a new analysis, modeling and design guideline for an Insulated Power Factor Corrected Single-Stage Converter. First, the operating principle is presented which provides a better understanding of the converter. So, based on this new analysis, the two operation modes description and the new steady-state gain of the converter are provided. A new control strategy for the input current control-loop is also proposed which provides an improvement of the total harmonic distortion (THD). The conditions to reset the magnetic flux for the high frequency transformer (HFT) into a switching period and the mitigation of the reactive energy are provided. At the sequence, the transfer functions that describe the dynamic behavior of the output voltage and the input current due to perturbations on duty-cycle and input voltage are derived. These dynamic models are derived based on the averaged equivalent circuit (AEC) obtained by modeling an equivalent DC-DC converter. Finally, the design guideline and experimental results for validation of the mathematical analysis and numerical simulation confirmation are provided.
Esta Dissertação de Mestrado apresenta uma nova análise, modelagem e metodologia de projeto de um conversor CA-CC isolado com um único estágio e correção do fator de potência. Inicialmente, é apresentado o princípio de operação do conversor em estudo propiciando um melhor entendimento do funcionamento do mesmo. Assim, baseada na nova análise, são apresentados os dois modos de operação do conversor e o novo ganho estático resultante. Também é proposta uma nova estratégia de controle para a corrente de entrada do conversor proporcionando uma redução na distorção harmônica total (DHT). Também serão estabelecidas as condições necessárias para a desmagnetização do núcleo do transformador de alta freqüência (TAF) em um período de chaveamento e a minimização de reativos circulantes. Posteriormente, são obtidas as funções de transferências que descrevem o comportamento dinâmico da tensão de saída e da corrente de entrada para perturbações na variável de controle ou na tensão de entrada. Esses modelos dinâmicos serão derivados do circuito médio equivalente (CME) obtido através da modelagem do conversor em estudo operando como um conversor CC-CC equivalente. Por fim, são apresentadas uma metodologia de projeto e os resultados experimentais para a validação da análise matemática e confirmação dos resultados obtidos através de simulações numéricas.
Anderson, Glenn Warwick Jan. "Hybrid simulation of AC-DC power systems." Thesis, University of Canterbury. Electrical and Computer Engineering, 1995. http://hdl.handle.net/10092/1176.
Full textMayes, Peter Richard. "A novel AC/DC bidirectional power converter." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239439.
Full textAl-Mothafar, M. R. D. "High frequency inverter-cycloconverter system for DC to AC conversion." Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378135.
Full textElshaer, Mohamed A. "AC/DC Smart Control and Power Sharing of DC Distribution Systems." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/556.
Full textSeixas, Mafalda Maria Morais. "Conversão eólica offshore ligada à rede elétrica: modelação e simulação." Doctoral thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/16084.
Full textYang, Xiaoguang Miu Karen Nan. "Unbalanced power converter modeling for AC/DC power distribution systems /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1231.
Full textBaltierrez, Jason. "Multiple Input, Single Output DC-DC Conversion Stage for DC House." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2028.
Full textAhmad, Khan Naveed. "Power Loss Modeling of Isolated AC/DC Converter." Thesis, KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-109717.
Full textHaryani, Nidhi. "Zero Voltage Switching (ZVS) Turn-on Triangular Current Mode (TCM) Control for AC/DC and DC/AC Converters." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96397.
Full textDoctor of Philosophy
Power supplies are at the heart of today's advanced technological systems like aero planes, UAVs, electrical cars, uninterruptible power supplies (UPS), smart grids etc. These performance driven systems have high requirements for the power conversion stage in terms of efficiency, density and reliability. With the growing demand of reduction in size for electromechanical and electronic systems, it is highly desirable to reduce the size of the power supplies and power converters while maintaining high efficiency. High density is achieved by pushing the switching frequency higher to reduce the size of the magnetics. High switching frequency leads to higher losses if conventional hard switching methods are used, this drives the need for soft switching methods without adding to the physical complexity of the system. This dissertation proposes novel soft switching techniques to improve the performance and density of AC/DC and DC/AC converters at high switching frequency without increasing the component count. The concept and the features of this new proposed control scheme, along with the comparison of its benefits as compared to conventional control methodologies, have been presented in detail in different chapters of this dissertation.
Gray, Weston L. "DC to DC power conversion module for the all-electric ship." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68166.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 91-92).
The MIT end to end electric ship model is being developed to study competing electric ship designs. This project produced a model of a Power Conversion Module (PCM)- 4, DC-to-DC converter which interfaces with the MIT model. The focus was on the Medium Voltage DC (MVDC) architecture, and therefore, the PCM-4 converts a MVDC bus voltage of 3.3, 6.5 or 10 kVDC to 1 kVDC. The design describes the transient and steady-state behavior, and investigates the naval architecture characteristics. A modular architecture, similar to SatCon Applied Technology's Modular Expandable Power Converters, was selected as the best balance for the wide variation in loads experienced. The model consists of a standard module that can be paralleled internally to provide for a wide range of system power requirements. Naval architecture parameters, such as weight, volume, efficiency, and heat load, were compiled into a parametric format allowing a reasonable approximation of actual weight and volume as a function of rating and efficiency and heat load as a function of loading. All of the parameters were evaluated for dependence on the MVDC bus voltage. Verification of the model was pursued through comparison to available simulations of similar power electronics to ensure that the model provided reasonable time response and shape. Finally, the model met all requirements with the exception of efficiency which was slightly lower than the requirement although several ideas were presented to improve efficiency.
by Weston L. Gray.
S.M.
Nav.E.
Du, Sijun. "Energy-efficient interfaces for vibration energy harvesting." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/270359.
Full text