Academic literature on the topic 'DC/DC bidirectional converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DC/DC bidirectional converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "DC/DC bidirectional converter"

1

Wallberg, Alexander. "Design and construction of a bidirectional DC/DC converter." Thesis, Uppsala universitet, Elektricitetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385240.

Full text
Abstract:
A four quadrant general single-phase bi-directional DC/DC converter was designed and constructed for high effect systems. The target application for the DC/DC converter was to be used to transfer energy between different energy storages, a miniature DC power grid and the high voltage AC power city grid. The converter is capable of step-up and step-down operations in both directions i.e. it is bi-directional at varying voltage levels. Different DC/DC topologies were investigated, and thereafter simulations were performed in LTspice and Simulink to ensure its capabilities and functionalities. The result of the simulations was a two layered PI-regulator, controlling both the external DC-grid voltage and inductor current through the converter. Once a suitable topology and control strategy was found, a suitable power transistor investigated and a PCB driver card were developed with KiCad. The final converter is capable to seamlessly change between its four modes and controlling voltages up to 1200 V and currents up to 200 A.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Junhong. "Bidirectional DC-DC Power Converter Design Optimization, Modeling and Control." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26126.

Full text
Abstract:
In order to increase the power density, the discontinuous conducting mode (DCM) and small inductance is adopted for high power bidirectional dc-dc converter. The DCM related current ripple is minimized with multiphase interleaved operation. The turn-off loss caused by the DCM induced high peak current is reduced by snubber capacitor. The energy stored in the capacitor needs to be discharged before device is turned on. A complementary gating signal control scheme is employed to turn on the non-active switch helping discharge the capacitor and diverting the current into the anti-paralleled diode of the active switch. This realizes the zero voltage resonant transition (ZVRT) of main switches. This scheme also eliminates the parasitic ringing in inductor current. This work proposes an inductance and snubber capacitor optimization methodology. The inductor volume index and the inductor valley current are suggested as the optimization method for small volume and the realization of ZVRT. The proposed capacitance optimization method is based on a series of experiments for minimum overall switching loss. According to the suggested design optimization, a high power density hardware prototype is constructed and tested. The experimental results are provided, and the proposed design approach is verified. In this dissertation, a general-purposed power stage model is proposed based on complementary gating signal control scheme and derived with space-state averaging method. The model features a third-order system, from which a second-order model with resistive load on one side can be derived and a first-order model with a voltage source on both sides can be derived. This model sets up a basis for the unified controller design and optimization. The Î -type model of coupled inductor is introduced and simplified to provide a more clearly physical meaning for design and dynamic analysis. These models have been validated by the Simplis ac analysis simulation. For power flow control, a unified controller concept is proposed based on the derived general-purposed power stage model. The proposed unified controller enables smooth bidirectional current flow. Controller is implemented with digital signal processing (DSP) for experimental verification. The inductor current is selected as feedback signal in resistive load, and the output current is selected as feedback signal in battery load. Load step and power flow step control tests are conducted for resistive load and battery load separately. The results indicate that the selected sensing signal can produce an accurate and fast enough feedback signal. Experimental results show that the transition between charging and discharging is very smooth, and there is no overshoot or undershoot transient. It presents a seamless transition for bidirectional current flow. The smooth transition should be attributed to the use of the complementary gating signal control scheme and the proposed unified controller. System simulations are made, and the results are provided. The test results have a good agreement with system simulation results, and the unified controller performs as expected.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Ramasamy, Thaiyal Naayagi. "Bidirectional DC-DC converter for aircraft electric energy storage systems." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/bidirectional-dcdc-converter-for-aircraft-electric-energy-storage-systems(34423ae1-ebfb-48bd-a66d-fd03b45615e7).html.

Full text
Abstract:
Future aircraft are likely to employ electrically powered actuators for adjusting flight control surfaces, and other high power transient loads. To meet the peak power demands of aircraft electric loads and to absorb regenerated power, an ultracapacitor-based energy storage system is examined in which a bidirectional dual active bridge DC-DC converter is used. This Thesis deals with the analysis, design, development and performance evaluation of the dual active bridge (DAB) converter, which can act as an interface between the ultracapacitor energy storage bank and the aircraft electrical power network. A steady-state analysis is performed for the DAB converter producing equations for the device RMS and average currents and the peak and RMS currents in the coupling inductor. This analysis focuses on understanding converter current shapes and identifying the zero-voltage switching (ZVS) boundary condition. A converter prototype was designed and built and its operation verified through SABER simulations confirming the accuracy of the analysis. Experimental results are included to support the analysis for 7kW, 20 kHz operating conditions giving a measured efficiency of 90%. To enhance the performance of the converter under light-loads, a quasi-square-wave mode of operation is proposed in which a dead-time is introduced either on the transformer primary voltage, or on the transformer secondary voltage, or simultaneously on both transformer primary and secondary. A similar detailed analysis as that for square-wave operation has been undertaken for all three cases and the converter performance was analysed focusing on ZVS operating range, impact of the RMS/peak inductor currents and converter efficiency. The theoretical work was validated through SABER simulations and proof of concept experimental measurements at 1kW, 20 kHz, which resulted in converter efficiency well above 91%. A 9%-17% improvement in efficiency and a 12%-17% improvement in ZVS operating range over square-wave operation are observed for similar operating conditions. Furthermore, a novel bidirectional current control technique for the DAB converter is presented. A SABER simulation has been performed and the converter operation is validated for square-wave and quasi-square-wave modes under steady-state and transient conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Chu, Alex. "Evaluation and Design of a SiC-Based Bidirectional Isolated DC/DC Converter." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/81994.

Full text
Abstract:
Galvanic isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Due to the recent advancement in wide-bandgap semiconductor devices, it has become feasible to achieve the galvanic isolation using bidirectional isolated DC/DC converters instead of line-frequency transformers. A survey of the latest generation SiC MOSFET is performed. The devices were compared against each other based on their key parameters. It was determined that under the given specifications, the most suitable devices are X3M0016120K 1.2 kV 16 mohm and C3M0010090K 900 V 10 mohm SiC MOSFETs from Wolfspeed. Two of the most commonly utilized bidirectional isolated DC/DC converter topologies, dual active bridge and CLLC resonant converter are introduced. The operating principle of these converter topologies are explained. A comparative analysis between the two converter topologies, focusing on total device loss, has been performed. It was found that the CLLC converter has lower total device loss compared to the dual active bridge converter under the given specifications. Loss analysis for the isolation transformer in the CLLC resonant converter was also performed at different switching frequencies. It was determined that the total converter loss was lowest at a switching frequency of 250 kHz A prototype for the CLLC resonant converter switching at 250 kHz was then designed and built. Bidirectional power delivery for the converter was verified for power levels up to 25 kW. The converter waveforms and efficiency data were captured at different power levels. Under forward mode operation, a peak efficiency of 98.3% at 15 kW was recorded, along with a full load efficiency value of 98.1% at 25 kW. Under reverse mode operation, a peak efficiency of 98.8% was measured at 17.8 kW. The full load efficiency at 25 kW under reverse mode operation is 98.5%.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Melo, Rodnei Regis de. "Bidirectional interleaved dc-dc converter applied to supercapacitors for electric vehicles." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12327.

Full text
Abstract:
nÃo hÃ<br>The electric vehicle is increasingly present in our cities every day, and in the technological context it has shown great progress. Two essential elements to the success of these vehicles are the electric energy storage devices and electronic converters for processing and management of this energy. In this context, this dissertation presents a study on the current situation of the electric vehicle on the world scenario and its embedded technologies. Another object of research are supercapacitors for application in electric vehicles as an energy storage source and fast energy transfer. Thus, these studies provide the basis for achieving the main objective of this work: developing a bidirectional dc-dc converter for managing the energy flow provided by a supercapacitor module applied in an electric vehicle. A 2 kW laboratory a prototype with two phase interleaved dc-dc bidirectional topology has been implemented. Also, all used methodology is exposed, such as qualitative analysis, dimensioning of components, modeling and design of PI type controllers for the proposed converter. The digital implementation of the control circuit was designed using the dsPIC30f4011 by Microchip. Through simulation and experimental tests, it was evaluated the behavior of the converter and a performance comparison was held, with the converter showing efficiency above 90%. Thus, through theoretical and practical results it was possible to evaluate the performance of the converter and future studies involving the complete structure of a model of a small electric vehicle.<br>O veÃculo elÃtrico està cada vez mais presente em nossas cidades, e no Ãmbito tecnolÃgico ele vem apresentando grandes avanÃos. Dois elementos essenciais para o sucesso desses veÃculos sÃo os dispositivos de armazenamento de energia elÃtrica e os conversores eletrÃnicos para processamento e gerenciamento dessa energia. Nesse contexto, esta dissertaÃÃo apresenta um estudo sobre a atual situaÃÃo do veÃculo elÃtrico no cenÃrio mundial e suas tecnologias embarcadas. Outro objeto de pesquisa sÃo os supercapacitores para aplicaÃÃo em veÃculos elÃtricos como fonte de armazenamento e transferÃncia rÃpida de energia. Neste contexto o presente trabalho aborda o desenvolvimento de um conversor cc-cc bidirecional para gerenciamento do fluxo de energia em um mÃdulo de supercapacitores para utilizaÃÃo em um veÃculo elÃtrico. à projetado e desenvolvido em laboratÃrio um protÃtipo com potÃncia de 2 kW, cuja topologia adotada à um conversor cc-cc bidirecional intercalado de duas fases. Deste modo, à exposta toda metodologia empregada onde à abordada a anÃlise qualitativa, o dimensionamento dos componentes, a modelagem e o projeto dos controladores tipo PI para o conversor proposto. Para a implementaÃÃo digital do circuito de controle foi utilizado o dsPIC30f4011 da Microchip. Por meio de simulaÃÃo e dos ensaios experimentais avaliou-se o comportamento do conversor e realizou-se uma comparaÃÃo de desempenho, tendo o conversor apresentado rendimento acima de 90%. Assim, pelos resultados teÃricos e prÃticos foi possÃvel avaliar o desempenho do conversor e creditar a continuidade de sua aplicaÃÃo a trabalhos futuros envolvendo a estruturaÃÃo completa de um modelo de veÃculo elÃtrico de pequeno porte.
APA, Harvard, Vancouver, ISO, and other styles
6

Mayes, Peter Richard. "A novel AC/DC bidirectional power converter." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mazza, Luan Carlos dos Santos. "Single phase bidirectional DAB DC-DC converter based on three state switching cell." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14412.

Full text
Abstract:
This work presented is DC-DC isolated ZVS Bidirectional Dual Active Bridge (DAB) single phase converter, based three-state switching cell is presented. The proposal is to apply it in photovoltaic systems with battery bank into smart networks. Basically the drive control is the duty cycle (D) of the switches and the Phase Shift (&#966;) of the fundamental tensions between the bridges. The gyrator modeling of the converter is presented, highlighting its natural operating characteristic as gyrator. Shows the qualitative and quantitative analysis of the converter, realizing the full study of the stages of operation of the topology and checking all sixteen regions of operation. To obtain the regions of soft-switching, the fundamental model is applied. The design procedure of the converter is presented, and the results of simulations. A 2kW prototype was developed, aimed at obtaining experimental results validate the theoretical analysis<br>Neste trabalho à apresentado o conversor CC-CC ZVS isolado bidirecional Dual Active Bridge (DAB) monofÃsico, baseado na cÃlula de comutaÃÃo de trÃs estados. A proposta à aplicÃ-lo em sistemas fotovoltaicos com banco de baterias em redes inteligentes. Basicamente o controle do conversor consiste na razÃo cÃclica (D) dos interruptores e o Phase Shift (&#966;) entre as componentes fundamentais das tensÃes entre as pontes. A modelagem por gyrator do conversor à apresentada, destacando-se sua caracterÃstica natural de funcionamento como gyrator. Mostra-se a anÃlise qualitativa e quantitativa do conversor, realizando o estudo completo das etapas de operaÃÃo da topologia e verificando todas as dezesseis regiÃes de operaÃÃo. Para obtenÃÃo das regiÃes de comutaÃÃo suave, à aplicado o modelo fundamental. O procedimento de projeto do conversor à apresentado, alÃm dos resultados de simulaÃÃes. Um protÃtipo de 2 kW foi desenvolvido, visando a obtenÃÃo dos resultados experimentais e validando a anÃlise teÃrica.
APA, Harvard, Vancouver, ISO, and other styles
8

Rezaee, Ali. "WIDE RANGE BI-DIRECTIONAL DC-DC CONVERTER." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41189.

Full text
Abstract:
Bi-directional DC-DC converters are used for applications that require a flow of energy in two directions, while a wide range converter offer efficient operation over a wide range of input and output voltages. However, an efficient technology that is both bi-directional and Wide Input Wide Output (WIWO), currently, does not currently exist.   To find a suitable topology, the work began by surveying the existing literature and when a potentially suitable solution was identified, it was evaluated via simulation.   Using a wide range, unidirectional topology as the starting point, a converter topology was designed, capable of reconfiguring its transformer ratios by controlling the synchronization of its switches.   By aiming to use soft switching in simulation, this topology was improved to reach 92\% efficiency in the forward mode and 95\% in the reverse mode of operation. Furthermore, a prototype of this converter was developed that reached 82\% efficiency. While this prototype requires a better controller, hardware optimization and testing for optimal performance, the proposed technology was verified via simulation to work as a WIWO converter that is also bi-directional.
APA, Harvard, Vancouver, ISO, and other styles
9

Han, Sangtaek. "High-power bi-directional DC/DC converters with controlled device stresses." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49010.

Full text
Abstract:
The objective of the research is to develop a cost-effective high-power bi-directional dc/dc converter with low total-device ratings, reduced system parasitic effects, and a wide input/output range. Additional objectives of the research are to develop a small-signal model and control methods, and to present performance characterizations. Device stresses in the proposed topology are controlled to maintain minimal levels by varying the duty ratio and phase-shift angle between the primary and the secondary bridges, which results in a low total-device rating, when compared to conventional bi-directional dc/dc topologies. In the proposed topology, soft switching, which reduces power loss, can be realized under specific operating conditions. When the condition that causes minimal device stress is satisfied, zero-voltage switching (ZVS) can be obtained. In the research, ZVS capability is explored for a wide range of voltage conditions as well as for the minimal device-stress condition. The performance characterization includes verifying the soft-switching regions and power-loss estimation. Another part of the thesis is the controller design of the converter. Small-signal models and feedback controllers are developed, and the controllers are experimentally validated. Because in the isolated high-frequency converters, transformer saturation is an important issue, a method to prevent transformer saturation is proposed and experimentally validated.
APA, Harvard, Vancouver, ISO, and other styles
10

Hedlund, Magnus. "Design and construction of a bidirectional DCDC converter for an EV application." Thesis, Uppsala University, Electricity, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119916.

Full text
Abstract:
<p>A Sliding Mode Control System for a Bidirectional DCDC Converter was designed and a low voltage prototype was constructed. The control system based its decisions solely on the latest available measurements, which improves performance when changing operative quadrant, since no memory needs reinitializing (such as for PI and state prediction methods). A boost control philosophy was presented, based on a current source approximation. The control was found to be stable without steady-state errors when the variance of the input/output dynamics was high.</p><p>The target application for the DCDC Converter is an EV (Electric Vehicle) with a flywheel driveline, which puts additional requirements of the converter. Among these are current and voltage control, bidirectionality, and a broad input voltage range.</p><p>Simulations were performed in Simulink prior to physical implementation, proving functionality of the proposed control system. The physical implementation of the control was done on a digital signal processor with code compiled from C. A median filter was designed to increase measurement efficiency for the current sensors which had shot-like noise distortions.</p>
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography