To see the other types of publications on this topic, follow the link: DC Voltage Control).

Journal articles on the topic 'DC Voltage Control)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'DC Voltage Control).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gadhethariya, Fenil V., and Melvin Z. Thomas. "Analysis of Voltage Droop Control of Dc Micro-Grid." Indian Journal of Applied Research 4, no. 5 (October 1, 2011): 235–38. http://dx.doi.org/10.15373/2249555x/may2014/69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hameed, Waleed Ishaq, Baha Aldeen Sawadi, and Ali Muayed. "Voltage Tracking Control of DC- DC Boost Converter Using Fuzzy Neural Network." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 4 (December 1, 2018): 1657. http://dx.doi.org/10.11591/ijpeds.v9.i4.pp1657-1665.

Full text
Abstract:
<span lang="EN-US">This paper deals with voltage tracking control of DC- DC boost converter based on Fuzzy neural network. Maintaining the output voltage of the boost converter in some applications are very important, especially for sudden change in the load or disturbance in the input voltage. Traditional control methods usually have some disadvantages in eliminating these disturbances, as the speed of response to these changes is slow and thus affect the regularity of the output voltage of the converter. The strategy is to sense the output voltage across the load and compare it with the reference voltage to ensure that it follows the required reference voltages. In this research, fuzzy neural was introduced to achieve the purpose of voltage tracking by training the parameter of controller based on previous data. These data sets are the sensing input voltage of the converter and the value of the output load changes. To establish the performance of proposed method, MATLAB/SIMULINK environments are presented, simulation results shows that proposed method works more precisely, faster in response and elimination the disturbances</span>
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Ming, Gang Peng, Jun Wei Hao, Jing Jing Lu, Chang Yuan, and Xiang Ning Xiao. "The Control Strategy of Establishing the Voltage of DC Side in MMC." Advanced Materials Research 756-759 (September 2013): 292–97. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.292.

Full text
Abstract:
This paper discusses the establishing method of DC voltage of modular multilevel converter (MMC). Firstly the structure of MMC and the charging principle of sub-modules (SMs) are introduced in order to control the DC voltage of MMC and reduce the switching loss. It is pointed out that the DC voltage control in MMC includes two parts, the DC voltage establishment of system and the voltages control of SMs. For the DC voltage control in system, the control theory is analyzed, and the corresponding control strategy is proposed. Meanwhile an improved voltage balance control strategy for SM is proposed by the improvements of the traditional voltage sorting method to reduce the high switching frequency caused by the blind action of switching devices in the SM control. Finally, the simulation results based on PSCAD/EMTDC show that DC voltage in MMC can run in the rated value steadily, and the switching frequency is reduced significantly.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiao, Junsheng. "Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell." Cybernetics and Information Technologies 13, no. 4 (December 1, 2013): 139–47. http://dx.doi.org/10.2478/cait-2013-0060.

Full text
Abstract:
Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Xi Yun, Li Xia Li, and Ya Min Zhang. "Control for Dc-Bus Voltage Using Grid Voltage Feed-Forward and Crowbar Circuit." Applied Mechanics and Materials 448-453 (October 2013): 1727–31. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1727.

Full text
Abstract:
The DC bus voltage is key variable for the operation of converter system in a wind power system. When grid voltage drops, a control of the DC bus voltage is needed to keep the smoothness of DC bus voltage for avoiding generator cutting off grid. A combined control method based on the grid voltage information feedforward with a crowbar circuit is proposed for a direct-drive wind power system in the paper. The unbalanced energy of the DC bus can be unleashed by the crowbar circuit during the dropping of grid voltage. At the same time, the output power of motor-side converter can be controlled to decrease according to the grid-side voltage information, and the mechanical speed of wind turbine and generator can be suppressed by the pitch angle regulation when the output power reduces. Thus, the DC-bus voltage can keep smooth. Results based on Matlab/Simulink simulation shows that this method not only improves dynamic response performance of DC bus voltages control, but also reduces the action time of crowbar circuit. It is benefit to the ability of the wind power system riding through the grid fault.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yun Wu, Jing Zhu, and Wei Feng Sun. "A Novel UVLO Circuit with Current-Mode Control Technique for DC-DC Converters." Advanced Materials Research 765-767 (September 2013): 2534–37. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2534.

Full text
Abstract:
A novel Under Voltage Lockout (UVLO) circuit featuring with fast response speed and low temperature coefficient threshold voltages is proposed in this paper. Compared with the conventional structure, the proposed circuit achieves the fast response ability thanks to the current-mode control technique is utilized. Meanwhile, this UVLO realizes hysteretic threshold by a feedback control path to improve the interference rejection capability. In addition, the threshold voltage varies slightly with the variation of the supply voltage and temperature by using a bandgap core. The proposed circuit implemented with 0.5μm BCD technology has an input high threshold voltage of 8.5V and a hysteresis of 1.5V, and start or shut off the power quickly. Test results verified that the proposed UVLO has the qualification to be applied to DC-DC converters.
APA, Harvard, Vancouver, ISO, and other styles
7

Midhat, Bashar F. "Discontinuous Control and Stability Analysis of Step-Down DC-DC Voltage Converters." Engineering and Technology Journal 38, no. 3A (March 30, 2020): 446–56. http://dx.doi.org/10.30684/etj.v38i3a.567.

Full text
Abstract:
Step down DC-DC converters are power electronic circuits, which mainly used to convert voltage from a level to a lower level. In this paper, a discontinuous controller is proposed as a control method in order to control Step-Down DC-DC converters. A Lyapunov stability criterion is used to mathematically prove the ability of the proposed controller to give the desired voltage. Simulationsl1 are performedl1 in MATLABl1 software. The simulationl1 resultsl1 are presentedl1 for changesl1 in referencel1 voltagel1 and inputl1 voltagel1 as well as stepl1 loadl1 variations. The resultsl1 showl1 the goodl1 performancel1 of the proposedl1 discontinuousl1 controller.
APA, Harvard, Vancouver, ISO, and other styles
8

Barros, J. Dionísio, Luis Rocha, and J. Fernando Silva. "Backstepping Predictive Control of Hybrid Microgrids Interconnected by Neutral Point Clamped Converters." Electronics 10, no. 10 (May 19, 2021): 1210. http://dx.doi.org/10.3390/electronics10101210.

Full text
Abstract:
In this work, DC and AC parts of hybrid microgrids are interconnected by a neutral point clamped—NPC converter controlled using a new backstepping predictive (BP) method. The NPC converter is controlled to operate in the DC microgrid voltage control mode or in the AC microgrid power control mode. The novel backstepping predictive controller is designed using the dq state space dynamic model of the NPC converter connected to the hybrid microgrid. The designed BP controller regulates the DC voltage or AC injected power, balances the capacitor voltages, controls the AC currents, and enforces the near unity power factor. Simulation (MATLAB/Simulink) and experimental (laboratory prototype) results show that the converter can regulate the DC voltage in the DC microgrid interconnection point, by adjusting the AC power conversion to compensate variations on the loads or on the distributed renewable energy sources in the DC microgrid. AC currents are sinusoidal with low harmonic distortion. The obtained BP controller is faster at balancing capacitor voltages than PWM (pulse width modulation) control with carrier offset. The fast AC power response allows the converter to be used as a primary frequency regulator of the AC microgrid. This research is appropriate for power and voltage control in hybrid microgrids with renewable energy.
APA, Harvard, Vancouver, ISO, and other styles
9

Chouya, Ahmed, and Kada Boureguig. "Linear Observer Based Linearizing Control of DC-DC Buck Converter." WSEAS TRANSACTIONS ON POWER SYSTEMS 16 (March 17, 2021): 52–60. http://dx.doi.org/10.37394/232016.2021.16.5.

Full text
Abstract:
In this article; we process DC-DC buck converter by linearizing control (non linear control INPUTOUTPUT). As one observes at the same time the inductor current not measurable by a linear state observer proposed. This method can control the system by varying the output voltages, input voltage and load resistance. The proposed method has a stable response capable of reaching the model reference smoothly.
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Xudong, Shaozhe Zhou, Jingze Li, and Shaohua Zhang. "A DC Voltage Control Strategy for Active Power Filter." Open Electrical & Electronic Engineering Journal 10, no. 1 (December 30, 2016): 166–80. http://dx.doi.org/10.2174/1874129001610010166.

Full text
Abstract:
Active Power Filter (APF) is capable of changing the size and frequency of harmonics as well as changes in reactive power compensation. It is important to control the stability of the DC-link capacitor voltage stability for it. For DC voltage controls of APF, there are two important achievements. First, it is indicated that the control of DC voltage directly affects the compensation performance of APF. Second, the value of DC voltage influences the power loss of APF. This paper firstly introduces the design of the DC voltage controller. Then the relationship between DC voltage and the power loss as well as the compensation performance of APF is analyzed. Finally, a new control scheme with a droop controller is developed to regulate DC voltage.
APA, Harvard, Vancouver, ISO, and other styles
11

Suh, Jung-Duk, Yeong-Ho Yun, and Bai-Sun Kong. "High-Efficiency DC–DC Converter with Charge-Recycling Gate-Voltage Swing Control." Energies 12, no. 5 (March 8, 2019): 899. http://dx.doi.org/10.3390/en12050899.

Full text
Abstract:
This paper proposes a high-efficiency DC–DC converter with charge-recycling gate-voltage swing control with a light load. By achieving a variable gate-voltage swing in a very efficient manner by charge recycling, the power efficiency has been substantially improved due to the lower power consumption and the achieved balance between the switching and conduction losses. A test chip was fabricated using 65-nm CMOS technology. The proposed design reduces the gate-driving loss by up to 87.7% and 47.2% compared to the conventional full-swing and low-swing designs, respectively. The maximum power conversion efficiency was 90.3% when the input and output voltages are 3.3 V and 1.8 V, respectively.
APA, Harvard, Vancouver, ISO, and other styles
12

Ardhenta, Lunde, and Ramadhani Kurniawan Subroto. "Application of direct MRAC in PI controller for DC-DC boost converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 2 (June 1, 2020): 851. http://dx.doi.org/10.11591/ijpeds.v11.i2.pp851-858.

Full text
Abstract:
<p>Almost all electronic components require a DC power supply at present days. The needs of DC power supplies from low voltage scales, medium voltages such as generators, to high voltage scales for high voltage electricity transmission. The improvement of PI controller performances is presented in this paper. The adaptation gains improve transient response of DC-DC Boost Converter several operating conditions. Massachusetts Institute of Technology (MIT) rule is applied as an adaptive mechanism to determine the optimal control parameters in some conditions. The used adaptive control technique is Direct Model Reference Adaptive Control (MRAC), this method as able to control system in some various input voltage. The proposed method has a stable response and able to reach the model reference smoothly. However, the response of the system has instantaneously overshoot and follows the response back of model reference. The responses of proposed controller have short period of rise time, settling time, and overshoot.</p>
APA, Harvard, Vancouver, ISO, and other styles
13

Vukadinović, Dinko, and Mateo Bašić. "A Stand-Alone Induction Generator with Improved Stator Flux Oriented Control." Journal of Electrical Engineering 62, no. 2 (March 1, 2011): 65–72. http://dx.doi.org/10.2478/v10187-011-0011-5.

Full text
Abstract:
A Stand-Alone Induction Generator with Improved Stator Flux Oriented ControlThis paper presents an improved stator flux oriented (SFO) control system for a stand-alone induction generator. The induction generator supplies a variable resistive dc load. In order to provide an essentially constant terminal voltage, the product of the rotor speed and the stator flux reference should remain constant. However, in this case the control system is not able to function properly at different loads and dc-link voltages. In this paper, we introduce a new algorithm in which this product is constant at certain dc-load and dc-link voltage references. The dependence of the stator flux reference on the dc load and dc voltage reference is mapped using an artificial neural network (ANN). We also present an analysis of the efficiency of the SFO control system, as well as its performance during transients, over a wide range of both dc-link voltage references and loads. The validity of the proposed approach is verified by realistic simulation in a Matlab-Simulink environment.
APA, Harvard, Vancouver, ISO, and other styles
14

Tsai, Wen Chang. "Design and Implementation of a Voltage Booster Circuit for High-Pressure Injector Drives in GDI Engines." Applied Mechanics and Materials 128-129 (October 2011): 1367–70. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.1367.

Full text
Abstract:
A DC/DC voltage booster circuit is essential to design for the high-pressure (H.P.) injector driving circuit since the power supply voltages for various H.P. injectors are DC 60~90 V rather than DC 12~14V battery voltages. The DC 12~14V battery voltages have to be boosted up to the stable DC 60~90 V voltages supply for being able to drive various H.P. injectors. The new H.P. injector driving circuit consists of a voltage booster circuit and an originally designed three-stage power MOSFETs injector driving circuit to control the dc-link power supply voltage. The dynamic performance of a H.P. injector driven by the designed electrical driving circuit with the voltage booster are simulated and analyzed. The stability and electrical characteristics for the voltage booster under various injection pulse durations and engine speeds are investigated. The fuel injection quantities, supply voltages and injector driving currents of the H.P. injector fed by the new injector driving circuit is illustrated and analyzed in the paper. The experimental results show that this injector driving circuit with a newly designed voltage booster is capable of operating stably to drive the H.P. injector and obtain the accurate fuel injection quantities in the air-fuel ratio control of engines.
APA, Harvard, Vancouver, ISO, and other styles
15

Ahmed Rmila, Salahaldein, and Simon S. Ang. "A High-Input Voltage Two-Phase Series-Capacitor DC-DC Buck Converter." Journal of Electrical and Computer Engineering 2020 (June 8, 2020): 1–15. http://dx.doi.org/10.1155/2020/9464727.

Full text
Abstract:
A high-input voltage 2-phase series-capacitor (2-pscB) DC-DC buck converter is theoretically analyzed, designed, and implemented. A new design approach for an automatic current sharing scheme was presented for a 2-phase series-capacitor synchronous buck converter. The series-capacitor voltage is used to achieve current sharing between phases without a current sensing circuit or external control loop as each phase inductor charges and discharges the series capacitor to maintain its average capacitor voltage constant. A novel isolated gate driver circuit to accommodate an energy storage capacitor is proposed to deliver isolated gate voltages to the switching transistors. An I2 control scheme that uses only one feedback path control for the four gate drivers is proposed to enable higher voltage conversion. An experimental 110-12 V 6 A load prototype converter was designed, and its current sharing characteristics were experimentally verified.
APA, Harvard, Vancouver, ISO, and other styles
16

S, Adarsh, and Nagendrappa H. "Duty ratio control ofthree port isolated bidirectional asymmetrical triple active bridge DC-DC converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 12, no. 2 (June 1, 2021): 943. http://dx.doi.org/10.11591/ijpeds.v12.i2.pp943-956.

Full text
Abstract:
Multiport converters are used in interfacing of distributed energy sources with grid/load. Isolated converters are needed in applications where converter gain is high and there is a requirement of isolation. Dual transformer asymmetric triple active bridge offers the advantage of reduced circulating current. However, the operating range is low for variation in load and source voltage. In this paper duty ratio modulation technique is proposed to regulate the load voltage and control the power flow in both the directions. As a result of the new gating scheme, the converter switches operate with ZVS, irrespective of variations in load power and source voltage. The converter is designed to ensure high switch utilization. The control technique is validatedthrough simulation of a 1kW three port DC-DC converter. It was observerd that the load voltage was regulated for wide range of variation in load power and source port voltages. The single input dual output mode was also verified.
APA, Harvard, Vancouver, ISO, and other styles
17

Duranay, Z. B., H. Guldemir, and S. Tuncer. "Fuzzy Sliding Mode Control of DC-DC Boost Converter." Engineering, Technology & Applied Science Research 8, no. 3 (June 19, 2018): 3054–59. http://dx.doi.org/10.48084/etasr.2116.

Full text
Abstract:
A sliding mode fuzzy control method which combines sliding mode and fuzzy logic control for DC-DC boost converter is designed to achieve robustness and better performance. A fuzzy sliding mode controller in which sliding surface whose reference is obtained from the output of the outer voltage loop is used to control the inductor current. A linear PI controller is used for the outer voltage loop. The control system is simulated using Matlab/Simulink. The simulation results are presented for input voltage and load variations. Simulated results are given to show the effectiveness of the control system.
APA, Harvard, Vancouver, ISO, and other styles
18

Mitic, Darko, Dragan Antic, Marko Milojkovic, Sasa Nikolic, and Stanisa Peric. "Input-output based quasi-sliding mode control of DC-DC converter." Facta universitatis - series: Electronics and Energetics 25, no. 1 (2012): 69–80. http://dx.doi.org/10.2298/fuee1201069m.

Full text
Abstract:
The paper presents the design of discrete-time quasi-sliding mode voltage controller for DC-DC buck converter. The control algorithm is realized by measuring only sensed output voltage. No current measurements and time derivatives of output voltage are necessary. The proposed quasi-sliding mode controller provides stable output voltage, exhibiting robustness to parameter and load variations.
APA, Harvard, Vancouver, ISO, and other styles
19

Xue, Sheng, Xinggui Wang, and Xiaoying Li. "Output Voltage Control of MMC-Based Microgrid Based on Voltage Fluctuation Compensation Sliding Mode Control." Mathematical Problems in Engineering 2020 (August 20, 2020): 1–11. http://dx.doi.org/10.1155/2020/9404259.

Full text
Abstract:
As a novel topology of microgrid, the output voltage control of MMC half bridge series microgrid (MMC-MG) is rarely studied. In this paper, on the basis of fully analyzing the mechanism of output voltage fluctuation of MMC-MG under the condition of islanded mode, a control strategy of a hybrid energy storage system is proposed to reduce the generating module (GM) DC-link voltage fluctuation caused by the randomness of renewable energy microsource output power. Moreover, in order to further improve the stabilization of the MMC-MG output voltage and meet the requirements of fast voltage recovery and antijamming, a sliding mode controller is designed. Then, a voltage fluctuation compensation controller is designed to suppress the DC component and fundamental frequency deviation of system output voltage caused by GM DC-link voltage fluctuation. The proposed control approach is validated against simulations using MMC-MG models with 4-GM per arm. The results show that the proposed hybrid energy storage control strategy can suppress the GM DC-link voltage fluctuation, the sliding mode controller can stabilize the system output voltage when the load drastic changes, and the fluctuation compensation strategy can suppress the DC component and the fundamental frequency deviation of system output voltage.
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Dong, Lie Xu, and Liangzhong Yao. "DC Voltage Variation Based Autonomous Control of DC Microgrids." IEEE Transactions on Power Delivery 28, no. 2 (April 2013): 637–48. http://dx.doi.org/10.1109/tpwrd.2013.2241083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Suroso, Suroso, Abdullah Nur Aziz, and Toshihiko Noguchi. "Five-level PWM Inverter with a Single DC Power Source for DC-AC Power Conversion." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 3 (September 1, 2017): 1212. http://dx.doi.org/10.11591/ijpeds.v8.i3.pp1212-1219.

Full text
Abstract:
<p>This paper presents a circuit configuration of five-level PWM voltage-source inverter developed from the three-level H-bridge inverter using only a single DC input power source. In the proposed five-level inverter, an auxiliary circuits working as the voltage balancing circuits of the inverter’s DC capacitors is presented. The auxiliary circuits work to keep stable DC capacitor voltages of the inverter, and also to reduce the capacitor size of the inverter. The unique point of the proposed balancing circuits is that it needs only a single voltage sensor to control the voltages of the two capacitors in the inverter. Moreover, a minimum number the inverter’s switching devices is also an important feature of the proposed inverter topology. A simple proportional integral controller is applied to control the voltage of the DC capacitors. The proposed topology is tested through computer simulation using PSIM software. Laboratory experimental tests were also conducted to verify the proposed inverter circuits. The computer simulation and experimental test results showed that the proposed balancing circuits works properly keeping stable voltages across the two DC capacitors of the inverter using only a single voltage sensor. The inverter also works well to synthesize a five-level PWM voltage waveform with sinusoidal load current.</p>
APA, Harvard, Vancouver, ISO, and other styles
22

Toumi, Toufik, Ahmed Allali, Othmane Abdelkhalek, Abdallah Ben Abdelkader, Abdelmalek Meftouhi, and Mohammed Amine Soumeur. "PV integrated single-phase dynamic voltage restorer for sag voltage, voltage fluctuations and harmonics compensation." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 1 (March 1, 2020): 547. http://dx.doi.org/10.11591/ijpeds.v11.i1.pp547-554.

Full text
Abstract:
<span>This document proposes a photovoltaic (PV) based single-phase dynamic voltage restoration (DVR) device, it eliminates both sag and swell voltage and compensates for power. The proposed system requires a power source to compensate for the sag/swell voltage. This system has found a simple topology for the DVR that uses PV with two DC-DC boosts converters as the DC power source for the dynamic voltage conservator. The DC/DC boost converter powered by the PV generator is used to increase the voltage to meet the DC bus voltage requirements of the single-branch voltage source inverter (VSI). This system uses renewable energy; saves energy accordingly and supplies power to critical/sensitive loads. The control method used in this work is a Sliding Mode Control (SMC) method and relies on a phase locked loop (PLL) used to control the active filter. The effectiveness of the suggested method is confirmed by the MATLAB/Simulink® simulation results and some prototype experiments. These results show the capacity of the proposed DC link control.</span>
APA, Harvard, Vancouver, ISO, and other styles
23

Hassan, Turki Kahawish. "Reduction of single DC bus capacitance in photovoltaic cascaded multilevel converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 3 (September 1, 2020): 1660. http://dx.doi.org/10.11591/ijpeds.v11.i3.pp1660-1674.

Full text
Abstract:
<span lang="EN-US">This paper presented single DC bus single phase seven level cascaded H-bridge (CHB) inverter for multi-panel photovoltaic grid-connected applications. A single DC bus supplying flyback converters to produce DC link voltages for CHB cells is suggested. A balanced operation of CHB inverter cells is obtained irrespective to power unbalance occurred by individual maximum power point tracking boost converter of photovoltaic (PV) panels due to the non-uniform irradiation and partial shading. A DC bus voltage control system with addition of estimated DC bus ripple voltage to the reference is proposed to eliminate the second order harmonic contained in the feedback voltage of DC bus enabling to design high bandwidth of DC voltage control loop. This produces fast dynamic response, low total harmonic distortion (THD) of grid current and smaller DC bus capacitance. Mathematical modeling of bus voltage control system is presented. PSIM simulation program is used and the simulation results are obtained to validate the proposed control system.</span>
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Yuye, Kaipei Liu, Xiaobing Liao, Shu Zhu, and Qing Huai. "A Virtual Impedance Control Strategy for Improving the Stability and Dynamic Performance of VSC–HVDC Operation in Bidirectional Power Flow Mode." Applied Sciences 9, no. 15 (August 5, 2019): 3184. http://dx.doi.org/10.3390/app9153184.

Full text
Abstract:
It is a common practice that one converter controls DC voltage and the other controls power in two-terminal voltage source converter (VSC)–based high voltage DC (HVDC) systems for AC gird interconnection. The maximum transmission power from a DC-voltage-controlled converter to a power-controlled converter is less than that of the opposite transmission direction. In order to increase the transmission power from a DC-voltage-controlled converter to a power-controlled converter, an improved virtual impedance control strategy is proposed in this paper. Based on the proposed control strategy, the DC impedance model of the VSC–HVDC system is built, including the output impedance of two converters and DC cable impedance. The stability of the system with an improved virtual impedance control is analyzed in Nyquist stability criterion. The proposed control strategy can improve the transmission capacity of the system by changing the DC output impedance of the DC voltage-controlled converter. The effectiveness of the proposed control strategy is verified by simulation. The simulation results show that the proposed control strategy has better dynamic performance than traditional control strategies.
APA, Harvard, Vancouver, ISO, and other styles
25

Girma, Chimdi Tadesse, and chi song. "Voltage control of bidirectional DC-DC converter with constant power source." MATEC Web of Conferences 232 (2018): 04038. http://dx.doi.org/10.1051/matecconf/201823204038.

Full text
Abstract:
—Bidirectional DC/DC converters are used in the interface of the battery bank and the high voltage direct current terminal of an inverter. The performance of the system depends on the control of voltage and current across the circuit. Voltage control in eliminates the need for changing the control loop when the power supply is changed to the alternating current source. The report explains the constant power supply voltage control. The diagram for the bidirectional dc/dc converters is analysed and the mathematical representations are given. The dynamic performance of the circuit is calculated to give the efficiency of the system in DC-link voltage control.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Xian Jin, and Bu Gen Wang. "Feed-Forward Control of Input-Series and Output-Parallel DC Transformer." Applied Mechanics and Materials 341-342 (July 2013): 791–96. http://dx.doi.org/10.4028/www.scientific.net/amm.341-342.791.

Full text
Abstract:
The input-series and output-parallel (ISOP) DC transformer, which has no output filter, runs under near 100% duty ratio, and is easily achieve zero voltage switching (ZVS) conditions and higher efficiency, is more and more attractive in the high input voltage and high power applications. In order to achieving input voltages sharing in ISOP DC transformer based on two non-resonant DC transformer modules, the feed-forward control method is proposed in this paper. And the principle of the proposed control is analyzed in detail. Finally, experimental results are given to verify the proposed control method to have a good ability of sharing the input voltages.
APA, Harvard, Vancouver, ISO, and other styles
27

Kajikawa, Tatsuyoshi, Eiji Takegami, Kohji Higuchi, Kazushi Nakano, and Satoshi Tomioka. "Robust Digital Control of DC-DC Power Supply with Remote Sensing." International Journal of Automation Technology 4, no. 6 (November 5, 2010): 502–9. http://dx.doi.org/10.20965/ijat.2010.p0502.

Full text
Abstract:
If the lines which connect the output terminal of a DCDC converter and the load are long, the voltage actually crossing to the load will change greatly due to the impedances of the lines, producing drops in voltage. In this paper, a separate terminal apart from the output terminal of DC-DC converter senses the voltage across to the load, and it leads it to the load. As a result, the voltage across to the load is adjusted so that it does not experience large changes. This method is called remote sensing. When the lines become long, the usual method of adjusting the voltage across to the load cannot sufficiently suppress changes in it. In this paper, a robust digital controller to suppress the change in the voltage across the load is proposed. Experimental studies using DSP demonstrate that this type of digital controller successfully suppresses it.
APA, Harvard, Vancouver, ISO, and other styles
28

Toufik, Toumi, Allali Ahmed, Abdelkhalek Othmane, Soumeur Mohammed Amine, and Nasri Abdelfatah. "Control DC link of single-phase dynamic voltage restorer." International Journal of Applied Power Engineering (IJAPE) 9, no. 3 (December 1, 2020): 297. http://dx.doi.org/10.11591/ijape.v9.i3.pp297-304.

Full text
Abstract:
This paper is aimed to illustrate and expose the performance of single-phase voltage dynamic voltage restorer (DVR) control connected to the electrical distribution grid. This performance is easily expressed by compensating for the sags and the swells voltages, and regulating the voltage across the load by injecting a voltage component in series with the source voltage increased or decreased with respect to the source voltage the load-side waveforms are purely sinusoidal. The integration of serial and chopper converters makes the DVR capable of bidirectional power flow. The key to this topology is its ability to compensate for sagging and swelling of the voltage in the long run. The modeling of the DVR and the design of its controller is included in this document. Effectiveness of control systems and start-up sequence of DVR operation is verified by detailed simulation studies. The control method used in this work is based on the use of a booster chopper and two cascade loops to generate the PWM command to control the chopper. The effectiveness of the suggested method is confirmed by the MATLAB/SIMULINK® simulation results and some prototype experiments. These results show the capacity of the proposed DC link control.
APA, Harvard, Vancouver, ISO, and other styles
29

Sattianadan, D., G. R. Prudhvi Kumar, R. Sridhar, Kuthuru Vishwas Reddy, Bhumireddy Sai Uday Reddy, and Panga Mamatha. "Investigation of low voltage DC microgrid using sliding mode control." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 4 (December 1, 2020): 2030. http://dx.doi.org/10.11591/ijpeds.v11.i4.pp2030-2037.

Full text
Abstract:
As the requirement of power increases, the use of renewable energy resources has become prominent. The power collected from these energy resources needs to be converted using AC-DC or DC-DC converters. The control of DC-DC converters is a complex task due to its non-linearity in the converter introduced by the external changes such as source voltage, cable resistance and load variations. Converters are to be designed to obtain a well stabilized output voltage and load current for variable source voltages and load changes. Droop control method is the most abundantly used technique in controlling the parallel converters. The major limitations of the conventional droop control technique are circulating current issues and improper load sharing. The proposed work is to resolve these issues by integrating Sliding Mode Controller (SMC) with the converter in order to enhance the performance of DC microgrid. The entire control system was designed by taking the output voltage error as the control variables. Similarly, droop control with PI and PID were also performed and all these techniques were simulated and compared using MATLAB/Simulink. The experimental results show that the proposed sliding mode controller technique provides good overall performance and is suitable against variable voltage and load changes.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Chunjiang, Pengcheng Li, and Yingjun Guo. "Bidirectional DC/DC and SOC Drooping Control for DC Microgrid Application." Electronics 9, no. 2 (January 30, 2020): 225. http://dx.doi.org/10.3390/electronics9020225.

Full text
Abstract:
In DC microgrids, distributed energy storage plays a key role in stabilizing the DC bus voltage. The bidirectional DC/DC converter in the distributed energy storage system should be designed according to the voltage level and electromagnetic isolation requirements, and multiple energy storage units should be coordinated for load current distribution according to the state of charge (SOC). This paper proposes a SOC power index droop control strategy by communication lines to coordinate the fast and high-precision distribution of load current among multiple energy storage units, and the SOC between energy storage units quickly converges to a consistent state. Considering that communication lines are susceptible to interference, this paper further proposes an improved SOC power index droop control to overcome the effects of communication line failures. Considering the high cost of the energy storage unit, it should be connected to the DC microgrid in layers to achieve a reasonable allocation of resources in practical applications. In order to provide high-quality power to a large power grid, the quantification standards of the DC bus fluctuation range and the working range of each converter are further discussed to maximize the stability of the DC bus voltage and grid-connected power fluctuation.
APA, Harvard, Vancouver, ISO, and other styles
31

Lu, Yimin, Haimeng Zhu, Xianfeng Huang, and Robert D. Lorenz. "Inverse-System Decoupling Control of DC/DC Converters." Energies 12, no. 1 (January 7, 2019): 179. http://dx.doi.org/10.3390/en12010179.

Full text
Abstract:
Existing large-signal control schemes for DC/DC converters formulate control strategies based primarily on nonlinear control theory, and the associated design and implementation are relatively complex. In this work, a decomposition modeling and inverse-system decoupling control method is proposed for DC/DC converters that operate under large-signal disturbances. First, a large-signal circuit-averaged model for DC/DC converters is established. The proposed control system has a double closed-loop control structure composed of a voltage loop and a current loop. Then, the voltage-loop and current-loop controlled subsystems are decoupled and compensated to first-order integral elements using the inverse system method. Several linear feedback controllers are designed for first-order integral systems under various optimization criteria using the optimal control theory. Simulation and experiment were performed on buck–boost converters with resistive and constant power loads. The results show that under the control of the proposed controller, all systems exhibited excellent dynamic and steady-state performance. The proposed method allows the disturbance control of the DC/DC converter, the dynamic behavior control of the voltage loop, and the current loop to become independent processes. The local controller design follows the classical linear control design method and is a simple and effective large-signal control strategy.
APA, Harvard, Vancouver, ISO, and other styles
32

Alsumady, Mohammed O., Yazan K. Alturk, Ahmad Dagamseh, and Ma'moun Tantawi. "Controlling of DC-DC Buck Converters Using Microcontrollers." International Journal of Circuits, Systems and Signal Processing 15 (March 30, 2021): 197–202. http://dx.doi.org/10.46300/9106.2021.15.22.

Full text
Abstract:
This paper presents a technique to digitally control the output voltage of a DC-DC converter via a microcontroller. The voltage regulation and controlling were achieved utilizing an LM2596 buck converter. A digital potentiometer MCP41050 is utilized to smoothly control the regulated output DC voltage via the SPI digital protocol. The proposed design is manufactured and tested for various loads. This device is considered as a step-down voltage regulator capable of driving 3A load with high efficiency, excellent linearity, source-voltage variation, and load regulation. The results show that the system can control the output voltage with satisfactory performance and high accuracy. With various loads, the proposed system shows a mean square error of 0.015±0.037 volts tested with a regulated voltage of 5 volts. The efficiency improves from about 80% to around 91% at a 1 kΩ load. This design eliminates the possible errors that arise when manually varying the voltage of the buck converter; by means of using a microcontroller. Such a system ensures a proper digitally controlled output voltage with a better performance, which can be applied in various applications.
APA, Harvard, Vancouver, ISO, and other styles
33

Sanjeevikumar, P., and K. Rajambal. "Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy." Modelling and Simulation in Engineering 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/593042.

Full text
Abstract:
This paper presents the topology of operating DC-DC buck converter in boost mode for extra-high-voltage applications. Traditional DC-DC boost converters are used in high-voltage applications, but they are not economical due to the limited output voltage, efficiency and they require two sensors with complex control algorithm. Moreover, due to the effect of parasitic elements the output voltage and power transfer efficiency of DC-DC converters are limited. These limitations are overcome by using the voltage lift technique, opens a good way to improve the performance characteristics of DC-DC converter. The technique is applied to DC-DC converter and a simplified control algorithm in this paper. The performance of the controller is studied for both line and load disturbances. These converters perform positive DC-DC voltage increasing conversion with high power density, high efficiency, low cost in simple structure, small ripples, and wide range of control. Simulation results along theoretical analysis are provided to verify its performance.
APA, Harvard, Vancouver, ISO, and other styles
34

Shruthi, Enugu. "A PVA Integrated DC-DC Converter with Feedback Loop Control." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 20, 2021): 1888–93. http://dx.doi.org/10.22214/ijraset.2021.35442.

Full text
Abstract:
This paper gives the detail information about “A PVA integrated DC-DC converter with feedback loop control”. The output voltage from the PV Array is controlled in this by using feedback loop system. The MATLAB simulations results show that the output voltage is stable.
APA, Harvard, Vancouver, ISO, and other styles
35

Lewicki, Arkadiusz. "DC-link voltage balancing in cascaded H-Bridge converters." Archives of Electrical Engineering 63, no. 3 (September 1, 2014): 439–55. http://dx.doi.org/10.2478/aee-2014-0032.

Full text
Abstract:
Abstract In this paper a DC-link voltage balancing strategy for multilevel Cascaded H-Bridge (CHB) converter is proposed. Presented solution bases on optimal choice of active vector durations in Space-Vector Pulse Width Modulation (SV-PWM). It makes it possible to DC-link voltages control and to properly generate the output voltage vector in the case of DC-link voltage unbalance. Results of simulation and experimental researches on proposed control strategy are presented in the paper
APA, Harvard, Vancouver, ISO, and other styles
36

Kang, Jin-Wook, Ki-Woong Shin, Hoon Lee, Kyung-Min Kang, Jintae Kim, and Chung-Yuen Won. "A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL)." Applied Sciences 8, no. 8 (August 16, 2018): 1387. http://dx.doi.org/10.3390/app8081387.

Full text
Abstract:
This paper studies a second order generalized integrator-frequency locked loop (SOGI-FLL) control scheme applicable for 3-phase alternating current/direct current (AC/DC) pulse width modulation (PWM) converters used in DC distribution systems. The 3-phase AC/DC PWM converter is the most important power conversion system of DC distribution, since it can boost 380 Vrms 3-phase line-to-line AC voltage to 700 Vdc DC output with various DC load devices and grid voltages. The direct-quadrature (d-q) transformation, positive sequence voltage extraction, proportional integral (PI) voltage/current control, and phase locked loop (PLL) are necessary to control the 3-phase AC/DC PWM converter. Besides, a digital filter, such as low pass filter and all pass filter, are essential in the conventional synchronous reference frame-phase locked loop (SRF-PLL) method to eliminate the low order harmonics of input. However, they limit the bandwidth of the controller, which directly affects the output voltage and load of 3-phase AC/DC PWM converter when sever voltage fluctuation, such as sag, swell, etc. occurred in the grid. On the other hand, the proposed control method using SOGI-FLL is able to do phase angle detection, positive sequence voltage extraction, and harmonic filtering without additional digital filters, so that more stable and fast transient control is achieved in the DC distribution system. To verify the improvement of the characteristics in the unbalanced voltage and frequency fluctuation of the grid, a simulation and experiment are implemented with 50 kW 3-phase AC/DC PWM converter used in DC distribution.
APA, Harvard, Vancouver, ISO, and other styles
37

Kavitha, M., and V. Sivachidambaranathan. "Comparison of Different Control Techniques for Interleaved DC-DC Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 2 (June 1, 2018): 641. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp641-647.

Full text
Abstract:
<p>Interleaved DC-DC converter with coupled inductor is used in standalone Photovoltaic, battery charger/discharger application. The main issue of the Interleaved DC-DC converter is that, it does not provide constant output voltage for a change in input voltage. Therefore, the converter efficiency is reduced. Hence to overcome this drawback, proper controller has to be used. In this paper, different control techniques such as PI, PID and Fuzzy logic controller are used. The simulation results of all three controllers were done using MATLAB/Simulink and compared. Fuzzy logic controller provides better regulated output voltage with less settling time of 0.04sec.</p>
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Se-Jin, and Young-Cheol Lim. "A Single-Phase Embedded Z-Source DC-AC Inverter." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/539297.

Full text
Abstract:
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Meiyan, Ke-Jun Li, Kaiqi Sun, and Zhijie Liu. "Operation Scenario and Coordination Control of DC Grid with DC-DC Converters." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 13, no. 3 (May 18, 2020): 369–77. http://dx.doi.org/10.2174/2352096512666181129115540.

Full text
Abstract:
Background: With the increasing development of voltage source converter based high voltage direct current (HVDC), it will become a reality to interconnect different DC networks into DC grid with DC-DC converters. Methods: In this paper, three operation scenarios for the DC grid with DC-DC converters are proposed, by which the DC networks can reinforce each other with relative independence. In order to achieve the flexible switching of the proposed scenarios, the DC-DC combined control and principle of parameter selection are presented. In addition, two coordination controls for different scenarios are given to optimize the distribution of unbalanced power when the disturbances occur in the grid. With the proposed scenarios and control strategy, the impacts caused by the disturbances are alleviated and the uninterrupted operation of the grid is guaranteed. Results: A simulation model is established on the PSCAD/EMTDC and the simulation results verify the effectiveness of the proposed operation scenarios and control strategy. Conclusion: Finally, the effectiveness of the proposed operation scenarios and control strategy is verified by the simulation results in PSCAD/EMTDC.
APA, Harvard, Vancouver, ISO, and other styles
40

Lewicki, A., and M. Morawiec. "Space-vector pulsewidth modulation for a seven-level cascaded H-bridge inverter with the control of DC-link voltages." Bulletin of the Polish Academy of Sciences Technical Sciences 65, no. 5 (October 1, 2017): 619–28. http://dx.doi.org/10.1515/bpasts-2017-0067.

Full text
Abstract:
Abstract A control strategy of DC-link voltages for a seven-level cascaded H-bridge inverter is proposed in this paper. The DC-link voltage balancing is accomplished by an appropriate selection of H-bridges and control of their duty cycles in space-vector modulation (SVM) algorithm. The proposed SVM method allows to maintain the same voltage level on all inverter capacitors. Regardless of the balancing function, the SVM strategy makes it possible to generate the output voltage vector properly also in the case where the DC-link voltages are not balanced. The results of simulation and experimental investigations are presented in the paper.
APA, Harvard, Vancouver, ISO, and other styles
41

Beriber, D., A. Talha, and M. Boucherit. "Stabilization of multi DC bus link voltages of multilevel NPC VSI. Application to double stator induction motors." Archives of Control Sciences 22, no. 1 (January 1, 2012): 107–20. http://dx.doi.org/10.2478/v10170-011-0015-1.

Full text
Abstract:
Stabilization of multi DC bus link voltages of multilevel NPC VSI. Application to double stator induction motors Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes of studying multilevel inverters are the generation of output voltage signals with low harmonic distortion and reduction of switching frequency. An important issue of the multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of multilevel neutral point clamped (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In this paper, we present study on the stability problem of the input DC voltages of the three-level Neutral Point Clamping (NPC) voltage source inverter (VSI). This inverter is useful for application in high voltage and high power area. In the first part, we remind the model of double stator induction motors (DSIM). Then, we develop control models of this inverter using the connection functions of the semi-conductors. We propose a Pulse Width Modulation (PWM) strategy to control this converter. The inverter is fed by constant input DC voltages. In the last part, we study the stability problem of the input DC voltages of the inverter. A cascade constituted by two three-level PWM rectifiers - two three-level NPC VSI - DSIM is discussed. The results obtained show that the input DC voltages of the inverters are not stable. To solve this problem, we propose to use a half clamping bridge. This solution is very promising in order to stabilize the input DC voltages of this converters.
APA, Harvard, Vancouver, ISO, and other styles
42

Alsokhiry, Fahad, and Grain Philip Adam. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation." Sustainability 12, no. 20 (October 13, 2020): 8440. http://dx.doi.org/10.3390/su12208440.

Full text
Abstract:
Numerous research studies on high capacity DC-DC converters have been put forward in recent years, targeting multi-terminal medium-voltage direct current (MVDC) and high-voltage direct current (HVDC) systems, in which renewable power plants can be integrated at both medium-voltage (MV) and high-voltage (HV) DC and AC terminals; hence, leading to complex hybrid AC-DC systems. Multi-port converters (MPCs) offer the means to promote and accelerate renewable energy and smart grids applications due to their increased control flexibilities. In this paper, a family of MPCs is proposed in order to act as a hybrid hub at critical nodes of complex multi-terminal MVDC and HVDC grids. The proposed MPCs provide several controllable DC voltages from constant or variable DC or AC voltage sources. The theoretical analysis and operation scenarios of the proposed MPC are discussed and validated with the aid of MATLAB-SIMULINK simulations, and further corroborated using experimental results from scale down prototype. Theoretical analysis and discussions, quantitative simulations, and experimental results show that the MPCs offer high degree of control flexibilities during normal operation, including the capacity to reroute active or DC power flow between any arbitrary AC and DC terminals, and through a particular sub-converter with sufficient precision. Critical discussions of the experimental results conclude that the DC fault responses of the MPCs vary with the topology of the converter adopted in the sub-converters. It has been established that a DC fault at high-voltage DC terminal exposes sub-converters 1 and 2 to extremely high currents; therefore, converters with DC fault current control capability are required to decouple the healthy sub-converters from the faulted one and their respective fault dynamics. On the other hand, a DC fault at the low-voltage DC terminal exposes the healthy upper sub-converter to excessive voltage stresses; therefore, sub-converters with bipolar cells, which possess the capacity for controlled operation with variable and reduced DC voltage over wide range are required. In both fault causes, continued operation without interruption to power flow during DC fault is not possible due to excessive over-current or over-voltage during fault period; however, it is possible to minimize the interruption. The above findings and contributions of this work have been further elaborated in the conclusions.
APA, Harvard, Vancouver, ISO, and other styles
43

Miao, Tianze, Xiaona Liu, Siyuan Liu, and Lihua Wang. "A New Control Strategy for Bi-directional DC/DC Converter in DC Microgrid." E3S Web of Conferences 233 (2021): 01051. http://dx.doi.org/10.1051/e3sconf/202123301051.

Full text
Abstract:
The bi-directional DC / DC converter in DC microgrid is a typical nonlinear system which has large voltage disturbance during lead accumulator charging and discharging. In order to solve the problem of voltage disturbance, the linearization of the converter is realized by exact feedback linearization, and the sliding mode controller is designed by using exponential approximation law. The simulation results show that the method has fast response speed, strong anti-interference ability and good steady-state characteristics.
APA, Harvard, Vancouver, ISO, and other styles
44

Bouchafaa, Farid, Mohamed Seghir Boucherit, and El Madjid Berkouk. "Feedback Loop Control Strategies of the Multi Dc Bus Link Voltages Using Adaptive Fuzzy Logic Control." Journal of Electrical Engineering 64, no. 3 (May 1, 2013): 143–51. http://dx.doi.org/10.2478/jee-2013-0021.

Full text
Abstract:
Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes that have led to the development of the studies about multilevel inverters are the generation of output voltage signals with low harmonic distortion; the reduction of switching frequency. A serious constraint in a multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of five-level neutral point clamping (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In order to stabilize these DC voltages, we propose in this paper to study the cascade constituted by three phases five-level PWM rectifier, a clamping bridge and five-level NPC (VSI). In the first part, we present a topology of five-level NPC VSI, and then they propose a model of this converter and an optimal PWM strategy to control it using four bipolar carriers. Then in the second part, we study a five-level PWM rectifier, which is controlled by a multiband hysteresis strategy. In the last part of this paper, the authors study shows particularly the problem of the stability of the multi DC voltages of the inverter and its consequence on the performances of the induction motors (IM). Then, we propose a solution to the problem by employed closed loop regulation using PI regulator type fuzzy logic controller (FLC). The results obtained with this solution confirm the good performances of the proposed solution, and promise to use the inverter in high voltage and great power applications as electrical traction.
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Mu Rong, Yasunori Kobori, Feng Zhao, Qiu Lin Zhu, Zachary Nosker, Shu Wu, Shaiful N. Mohyar, Haruo Kobayashi, and Nobukazu Takai. "Single-Inductor Dual-Output DC-DC Converter Design with Exclusive Control." Key Engineering Materials 643 (May 2015): 47–52. http://dx.doi.org/10.4028/www.scientific.net/kem.643.47.

Full text
Abstract:
This paper proposes a single inductor dual output (SIDO) DC-DC converter with an exclusive control circuit. We propose two kinds of converter: a buck-buck and a boost-boost converter. Multiple voltage outputs are controlled exclusively, using error voltage feedback. This approach requires a few additional components (a switch, a diode and a comparator), but requires no current sensors and does not depend on the value of output voltage or output current. We describe circuit topologies, operation principles and simulation results.
APA, Harvard, Vancouver, ISO, and other styles
46

Silva-Ortigoza, R., C. Márquez-Sánchez, F. Carrizosa-Corral, M. Antonio-Cruz, J. M. Alba-Martínez, and G. Saldaña-González. "Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System." Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/912815.

Full text
Abstract:
This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.
APA, Harvard, Vancouver, ISO, and other styles
47

Angulo-Garcia, David, Fabiola Angulo, Gustavo Osorio, and Gerard Olivar. "Control of a DC-DC Buck Converter through Contraction Techniques." Energies 11, no. 11 (November 8, 2018): 3086. http://dx.doi.org/10.3390/en11113086.

Full text
Abstract:
Reliable and robust control of power converters is a key issue in the performance of numerous technological devices. In this paper we show a design technique for the control of a DC-DC buck converter with a switching technique that guarantees both good performance and global stability. We show that making use of the contraction theorem in the Jordan canonical form of the buck converter, it is possible to find a switching surface that guarantees stability but it is incapable of rejecting load perturbations. To overcome this, we expand the system to include the dynamics of the voltage error and we demonstrate that the same design procedure is not only able to stabilize the system to the desired operation point but also to reject load, input voltage, and reference voltage perturbations.
APA, Harvard, Vancouver, ISO, and other styles
48

Daud, Muhamad Zalani, Azah Mohamed, and M. A. Hannan. "An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage." Scientific World Journal 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/271087.

Full text
Abstract:
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, Pang‐Jung, Yu‐Min Lai, Ping‐Chieh Lee, and Hsin‐Shu Chen. "Fast‐transient DC–DC converter with hysteresis prediction voltage control." IET Power Electronics 10, no. 3 (March 2017): 271–78. http://dx.doi.org/10.1049/iet-pel.2016.0382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Saggini, Stefano, Daniele Trevisan, Paolo Mattavelli, and Massimo Ghioni. "Synchronous–Asynchronous Digital Voltage-Mode Control for DC–DC Converters." IEEE Transactions on Power Electronics 22, no. 4 (July 2007): 1261–68. http://dx.doi.org/10.1109/tpel.2007.900554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography