Academic literature on the topic 'DDoS-Protection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DDoS-Protection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DDoS-Protection"
Reynolds, Roy. "It's time to rethink DDoS protection." Network Security 2020, no. 1 (January 2020): 6–8. http://dx.doi.org/10.1016/s1353-4858(20)30007-6.
Full textShah, Harshil, Priyansh Shah, and Swapna Naik. "DDOS Protection by Dividing and Limiting." International Journal of Computer Applications 155, no. 11 (December 15, 2016): 12–14. http://dx.doi.org/10.5120/ijca2016912251.
Full textEvglevskaya, N. V., A. Yu Zuev, A. O. Karasenko, and O. S. Lauta. "Comparative analysis of the effectiveness of existing methods of networks security from DDoS attacks." Radio industry (Russia) 30, no. 3 (September 8, 2020): 67–74. http://dx.doi.org/10.21778/2413-9599-2020-30-3-67-74.
Full textMahmood, Hassan, Danish Mahmood, Qaisar Shaheen, Rizwan Akhtar, and Wang Changda. "S-DPS: An SDN-Based DDoS Protection System for Smart Grids." Security and Communication Networks 2021 (March 20, 2021): 1–19. http://dx.doi.org/10.1155/2021/6629098.
Full textSelvakani, S., K. Vasumathi, T. Vijayalakshmi, and A. Kavitha. "Attack in SDN Based Distributed Denial of Service." Asian Journal of Engineering and Applied Technology 10, no. 1 (May 5, 2021): 38–44. http://dx.doi.org/10.51983/ajeat-2021.10.1.2802.
Full textRebecchi, Filippo, Julien Boite, Pierre-Alexis Nardin, Mathieu Bouet, and Vania Conan. "DDoS protection with stateful software-defined networking." International Journal of Network Management 29, no. 1 (August 9, 2018): e2042. http://dx.doi.org/10.1002/nem.2042.
Full textKhalaf, Bashar Ahmad, Salama A. Mostafa, Aida Mustapha, Mazin Abed Mohammed, Moamin A. Mahmoud, Bander Ali Saleh Al-Rimy, Shukor Abd Razak, Mohamed Elhoseny, and Adam Marks. "An Adaptive Protection of Flooding Attacks Model for Complex Network Environments." Security and Communication Networks 2021 (April 22, 2021): 1–17. http://dx.doi.org/10.1155/2021/5542919.
Full textSaleh, Mohammed A., and Azizah Abdul Manaf. "A Novel Protective Framework for Defeating HTTP-Based Denial of Service and Distributed Denial of Service Attacks." Scientific World Journal 2015 (2015): 1–19. http://dx.doi.org/10.1155/2015/238230.
Full textLe, Duc, Minh Dao, and Quyen Nguyen. "Comparison of machine learning algorithms for DDoS attack detection in SDN." Information and Control Systems, no. 3 (June 15, 2020): 59–70. http://dx.doi.org/10.31799/1684-8853-2020-3-59-70.
Full textJili, Tianwen, and Nanfeng Xiao. "DDoS Detection and Protection Based on Cloud Computing Platform." Journal of Physics: Conference Series 1621 (August 2020): 012005. http://dx.doi.org/10.1088/1742-6596/1621/1/012005.
Full textDissertations / Theses on the topic "DDoS-Protection"
Sönnerfors, Peter, Elliot Nilsson, and Michael Gustafsson. "DDoS-skydd för hemanvändare : En studie kring DDoS." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34952.
Full textTo make a living as streaming personality on the Internet is something that has grownexponentially in recent times. This also leads to one becoming a clear target for attacks.This work has highlighted the problems that DDoS-attacks create when they are aimedat home users. Various solutions to this problem are reviewed and analyzed. Tests havebeen conducted to illustrate the simplicity of the attack and how it affects home usershardware. The result of the tests has shown that VPN is a competent solution but also hasits disadvantages.
Semaan, Nasr Elie. "Security of smart city network infrastructures : design and implementation : application to “Sunrise – Smart City” Demonstrator." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10103/document.
Full textThe purpose of this thesis is to design and implement a cyber-threat intelligence strategy to support strategic decisions. Early warning and detection of breaches are decisive to being in a state of readiness, meaning that the emphasis of cybersecurity has changed to threat intelligence. For that reason, we created, analyzed, implemented, and tested two solutions. The first solution acts as a predictive and proactive mechanism. It is a novel framework used to analyze and evaluate quantitatively the vulnerabilities associated with a smart city network. This solution uses the Markov Chain Model to determine the highest vulnerability severity level of a potential attack path in the attacks graph of the network. High severity level of a potential attack path will lead the system administrator to apply appropriate security measures a priori to attacks occurrence. The second solution acts as a defensive or self-protective mechanism. This framework mitigates the zero-day availability attacks based on Identification, Heuristics and Load Balancer in a reasonable time frame. This defensive mechanism has been proposed mainly to mitigate Distributed Denial of Service (DDoS) attacks since they are considered one of the most severe availability attacks that could paralyze the smart city’s network and cause complete black out. This solution relies on two load balancers in which the first one uses a heuristic approach, and the second acts as a backup to produce a solution in a reasonable time frame
Eklund, Martin, and Patrik Ståhlberg. "Distributed denial of service attacks : Protection, Mitigation, and Economic Consequences." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170924.
Full textDistributed Denial of Service (DDoS) attacker är ett problem som ständigt hotar företag, som förlitar sig till internet för centrala delar av sin verksamhet. En DDoS-attack som lyckas penetrerar ett företags nätverk kan medföra förödande skador i form av förlorade intäkter, minskad produktivitet, ökade kostnader samt skada på företagets rykte/varumärke. DDoS-attackerna är många och av olika karaktär, som attackerar olika delar av ett företags nätverk, vilket leder till att det är svårt att effektivt skydda sig mot DDoS-attacker. Det står också klart att DDoS-attacker ökar både till antalet och storleksmässigt för varje år som går. Utifrån våra egna experiment har vi kunnat bevisa att vem som helst med små medel och begränsade kunskaper kan utföra en DDoS-attack som sänker en webbsida. Ett faktum som gör att alla företag vars verksamhet är baserad på internet bör räkna med att de någon gång bli utsatta för en DDoS-attack. Utifrån våra undersökningar kan vi se att det finns en uppsjö av olika DDoS-skydd på marknaden, skydd som hanterar några problem som DDoS-attacker medför, men det finns inga kompletta skydd som kan garantera 100 % säkerhet. Utifrån tidigare forskning på området framgår det att det finns många olika sätt att skydda sig mot DDoS-attacker, t.ex. genom Software Defined Networks, Hop-Count Filtering eller Kill-bots. Våra egna tester visar på att en virtuell brandvägg kan vara ett sätt att skydda sig mot DDoS-attacker, men testerna visar också att en sådan lösning inte heller är säker då man kan förstöra åtkomsten till webbsidan genom att överbelasta brandväggen.<p> Undersökningen visar också att ett av de vanligaste motiven bakom DDoS-attacker är kriminella ändamål. Kriminella som använder DDoS-attacker för att tjäna pengar genom att erbjuda riktade DDoS-attacker mot websidor eller genom försök att utpressa till betalning med DDoS-attacker som ett hot. Vi har kommit fram till att de ekonomiska konsekvenserna av DDoS-attacker kan vara ödestigna för företag om det inte hanteras i tid. Genom våra egna beräkningar har vi visat att e-handelsföretaget CDON.com riskerar att förlora ca 36 415,90 kr per minut som en DDoS-attack pågår mot företaget. Anledningen till av vi valt att ägnad denna uppsats åt DDoS-problemet, är den skrämmande ökningen av DDoS-attacker som man kan se sker årligen. Attackerna blir flera, de ökar storleksmässigt och de blir allt mer sofistikerade. Attackerna utförs också tillsynes omotiverat i vissa fall, men också välplanerade attacker utförs för att skada företag ekonomiskt. I dagens företagsklimat är det viktigt att företaget har möjlighet att använda sig av internet för att driva verksamheten och göra det enkelt för kunder att ta del av företagets produkter/tjänster. Att företags webbsidor blir utslagen på grund av en DDoS-attacker är idag en verklighet, och en tydlig plan för att hur man ska hantera en sådan incident bör finns på plats inom företag.
Trabé, Patrick. "Infrastructure réseau coopérative et flexible de défense contre les attaques de déni de service distribué." Toulouse 3, 2006. http://www.theses.fr/2006TOU30288.
Full textThe goal of Distributed Denial of Service attacks (DDoS) is to prevent legitimate users from using a service. The availability of the service is attacked by sending altered packets to the victim. These packets either consume a large part of networks bandwidth, or create an artificial consumption of victim’s key resources such as memory or CPU. DDoS’ filtering is still an important problem for network operators since illegitimate traffics look like legitimate traffics. The discrimination of both classes of traffics is a hard task. Moreover DDoS victims are not limited to end users (e. G. Web server). The network is likely to be attacked itself. The approach presented in this thesis is pragmatic. Firstly it seeks to control dynamic and distributed aspects of DDoS. Secondly it looks for protecting legitimate traffics and the network against collateral damages. Thus we propose a distributed infrastructure of defense based on nodes dedicated to the analysis and the filtering of the illegitimate traffic. Each node is associated with one POP router or interconnection router in order to facilitate its integration into the network. These nodes introduce the required programmability through open interfaces. The programmability offers applicative level packets processing, and thus treatments without collateral damages. A prototype has been developed. It validates our concepts
Sikora, Marek. "Detekce slow-rate DDoS útoků." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317019.
Full textLee, Fu-Yuan, and 李富源. "Designing Protection Mechanisms against DDoS Attacks." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/96879939452713301266.
Full textWu, Yo-Cheng, and 吳宥徵. "Designing A Protection System against DDoS Attacks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/04146199808879810778.
Full text中原大學
電機工程研究所
97
Abstract In this thesis, we propose a new protection system, it can effectively resist the distributed denial-of-service (DDoS) attacks. It can improve the accuracy of judgment of the malicious attacks, and it can make the network quality more effectively. In the first step, we propose the combination of the detection and routing-redirect to resist DDoS attacks. This method can effectively channelize the malicious packets. Due to the DDoS packets is features, the monitor-side can use as reference to blocked most of the malicious packets. Besides, we will use the double lines of defense to minimize the damage. In the second step, we establish a list of IP address to determine legitimate users in peacetime. When the attack occurred, it can judge normal users to avoid interference with the user of services. The contributions of work are as follows. (1) In our system, we can effectively judge malicious packets to lower the error rates. (2) The establishment of the list method can reduce the time of re-analysis to avoid interference with the users. We trust these mechanisms can significantly reduce attack volume. The results of our research in thesis shows that it will be much helpful to future research in the category of the DDoS defense.
Hsieh, Yen-Wei, and 謝彥偉. "An Overload Protection Mechanism Under DDoS Attack." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/94866290373248887975.
Full text國立中央大學
資訊工程研究所
92
Many attacks on the internet reveal much vulnerability in recent years; causing the largest damage among them we called DDoS. For much existent defense strategies, the DDoS is hard to prevent. With the popularity of the internet, it is more and more easily to find vulnerable server; some intent attacker will use these weakness to attack the particular server that the service can’t be available to the legitimate user . Due to DDoS has characteristic of congestion and continuity, so that the packet can’t be forwarded normally because of router-overloading. Most defense mechanism can’t communicate through the congested network; it is unnecessary to say that if attacks occur, other protection mechanism will work. In view of this, this paper proposed the overload protection mechanism under DDoS that it can bypass the attacking packet quickly and precisely also defend large source and decrease loading of router when attacks occur in order to transmit packet fluently for other legitimate user. Moreover, it can work with other defense mechanism to enhance the performance of protection mechanism. We use the physical topology to simulate the performance of our protection mechanism under DDoS attack. The result of our experiment evidenced that overload protection mechanism is practical and decreases the influence effectively.
Kuo, Jin-Yan, and 郭晉晏. "SDN Based Protection for DDoS Attack with Flow Correlation Analysis." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4cz22f.
Full text國立交通大學
資訊管理研究所
105
Software Defined Network (SDN) decouples control function from traditional data plane and use OpenFlow as the communication protocol between the control plane and data plane. It can centralize the network control to decrease the complexity of network topology. But, this SDN characteristic makes the controller become vulnerable since attackers may launch Distributed Denial of Service (DDoS) attacks against the controller. In this paper, we propose a complete protection system for DDoS attack with four major modules: anomaly detection module, attack detection module, traceback module and attack mitigation module. We use packet_in message query the controller for routing rule to implemented anomaly detection module. Then, we use K-nearest neighbors with correlation features selection (CKNN) to classify whether the flow is an attack flow in attack detection module. Because of the extracting feature from correlation information, the classification efficiency is increased. The accuracy of CKNN using our feature can achieve 99%. Finally, we find the attack path in traceback module and block the attack traffic by attack mitigation module. This system we proposed can effectively reduce the load (CPU) of the controller and switches by quickly find out attack source.
Lien, Chia-Chun, and 連嘉俊. "Tracers Deployment of Nodes-Aware Protection Areas against DDoS Attacks." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/46763164147765613154.
Full text中華大學
資訊工程學系碩士班
102
Network security problems emerge in an endless stream. One of serious problems is Distributed Denial of Service (DDoS) attack, which paralyzes hosts such that they cannot provide service for their clients by occupying their resources or network bandwidth. To solve the DDoS problems efficiently, traditional routers have to be enhanced with additional capabilities such as tracing attacks origins, filtering malicious packets, etc. We refer the enhanced routers to as tracers. Under the cost consideration in practice, it is hard to upgrade all of routers to be tracers in short-term. Therefore the tracer deployment becomes the key to the performance of DDoS defense. In previous work, tracers can be deployed on the surrounds of protection areas, which the diameter of each one is limited to an assigned number of hop counts. Although the deployment can guarantee packet traceable when the path of packet is longer than or equal to the diameter of protection area, searching cost of attack origins cannot be controlled. This is because the number of nodes in a protection area may be too many. In this thesis, we first try to reduce tracer density compared to the previous work and then propose a new node-aware tracer deployment that can limit the number of nodes in a protection area. The simulation results show that the tracer density can be improved in small networks and node-aware tracer deployment can control the searching cost of attack origins.
Books on the topic "DDoS-Protection"
Gupta, Rajneesh. Hands-On Cybersecurity with Blockchain: Implement DDoS protection, PKI-based identity, 2FA, and DNS security using Blockchain. Packt Publishing, 2018.
Find full textBook chapters on the topic "DDoS-Protection"
Qu, Haipeng, Lina Chang, Lei Ma, Yanfei Xu, and Guangwei Yang. "DPEES: DDoS Protection Effectiveness Evaluation System." In Lecture Notes in Electrical Engineering, 155–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28798-5_22.
Full textBadhwar, Raj. "Distributed Denial of Service (DDoS) Protection." In The CISO’s Next Frontier, 231–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75354-2_28.
Full textSomani, Gaurav, Manoj Singh Gaur, and Dheeraj Sanghi. "DDoS Protection and Security Assurance in Cloud." In Computer Communications and Networks, 171–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25988-8_10.
Full textCulnane, Chris, Mark Eldridge, Aleksander Essex, and Vanessa Teague. "Trust Implications of DDoS Protection in Online Elections." In Electronic Voting, 127–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68687-5_8.
Full textTung, Tony Miu, Chenxu Wang, and Jinhe Wang. "Understanding the Behaviors of BGP-based DDoS Protection Services." In Network and System Security, 463–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02744-5_34.
Full textApiecionek, Łukasz, Jacek M. Czerniak, and Wojciech T. Dobrosielski. "Quality of Services Method as a DDoS Protection Tool." In Advances in Intelligent Systems and Computing, 225–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11310-4_20.
Full textPascoal, Túlio A., Yuri G. Dantas, Iguatemi E. Fonseca, and Vivek Nigam. "Slow TCAM Exhaustion DDoS Attack." In ICT Systems Security and Privacy Protection, 17–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58469-0_2.
Full textMubarok, Ibnu, Kiryong Lee, Sihyung Lee, and Heejo Lee. "Lightweight Resource Management for DDoS Traffic Isolation in a Cloud Environment." In ICT Systems Security and Privacy Protection, 44–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55415-5_4.
Full textSarmento, Augusto Gonzaga, Kheng Cher Yeo, Sami Azam, Asif Karim, Abdullah Al Mamun, and Bharanidharan Shanmugam. "Applying Big Data Analytics in DDos Forensics: Challenges and Opportunities." In Cybersecurity, Privacy and Freedom Protection in the Connected World, 235–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68534-8_15.
Full textBhadula, Rakesh Chandra, V. N. Kala, Amit Kumar Mishra, and Deepak Kholiya. "Utilization of puzzles for protection against DDoS attacks." In Distributed Denial of Service Attacks, 203–16. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110619751-010.
Full textConference papers on the topic "DDoS-Protection"
Jonker, Mattijs, and Anna Sperotto. "Measuring exposure in DDoS protection services." In 2017 13th International Conference on Network and Service Management (CNSM). IEEE, 2017. http://dx.doi.org/10.23919/cnsm.2017.8255991.
Full textPapadie, Roxana, and Ioana Apostol. "Analyzing websites protection mechanisms against DDoS attacks." In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2017. http://dx.doi.org/10.1109/ecai.2017.8166454.
Full textJonker, Mattijs, Anna Sperotto, Roland van Rijswijk-Deij, Ramin Sadre, and Aiko Pras. "Measuring the Adoption of DDoS Protection Services." In IMC 2016: Internet Measurement Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2987443.2987487.
Full textGeorgiev, Ivan, and Kamelia Nikolova. "An approach of DNS protection against DDoS attacks." In 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). IEEE, 2017. http://dx.doi.org/10.1109/telsks.2017.8246248.
Full textPham-Quoc, Cuong, Biet Nguyen-Hoang, and Tran Ngoc Thinh. "A reconfigurable heterogeneous multicore architecture for DDoS protection." In 2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS). IEEE, 2016. http://dx.doi.org/10.1109/nics.2016.7725648.
Full textPermpoontanalarp, Yongyuth, and Jatupoom Kanokkanjanapong. "Dynamic Undeniable Fair Certified Email with DDoS Protection." In 22nd International Conference on Advanced Information Networking and Applications (aina 2008). IEEE, 2008. http://dx.doi.org/10.1109/aina.2008.61.
Full textRazumov, Pavel V., Olga A. Safaryan, Ivan A. Smirnov, Vitaliy M. Porksheyan, Nickolay V. Boldyrikhin, Denis A. Korochentsev, Larissa V. Cherckesova, and Sergey A. Osikov. "Developing of Algorithm of HTTP FLOOD DDoS Protection." In 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS). IEEE, 2020. http://dx.doi.org/10.1109/iccais48893.2020.9096870.
Full textBekeneva, Ya, N. Shipilov, K. Borisenko, and A. Shorov. "Simulation of DDoS-attacks and protection mechanisms against them." In 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2015. http://dx.doi.org/10.1109/eiconrusnw.2015.7102230.
Full textApiecionek, Lukasz, and Wojciech Makowski. "Firewall rule with token bucket as a DDoS protection tool." In 2015 IEEE 13th International Scientific Conference on Informatics. IEEE, 2015. http://dx.doi.org/10.1109/informatics.2015.7377803.
Full textBoite, Julien, Pierre-Alexis Nardin, Filippo Rebecchi, Mathieu Bouet, and Vania Conan. "Statesec: Stateful monitoring for DDoS protection in software defined networks." In 2017 IEEE Conference on Network Softwarization (NetSoft). IEEE, 2017. http://dx.doi.org/10.1109/netsoft.2017.8004113.
Full textReports on the topic "DDoS-Protection"
Park, Kihong. Scalable Protection Against DDOS and Worm Attacks. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada423164.
Full text