Academic literature on the topic 'Decay of solutions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decay of solutions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decay of solutions"
Berman, Sheri. "Solutions for Democratic Decay." Dissent 68, no. 3 (2021): 193–97. http://dx.doi.org/10.1353/dss.2021.0058.
Full textZhang, Yufeng, and Jiangen Liu. "Periodic and decay mode solutions of the generalized variable-coefficient Korteweg–de Vries equation." Modern Physics Letters B 33, no. 20 (2019): 1950234. http://dx.doi.org/10.1142/s0217984919502348.
Full textSantos, Mauro de Lima. "Decay rates for solutions of a Timoshenko system with a memory condition at the boundary." Abstract and Applied Analysis 7, no. 10 (2002): 531–46. http://dx.doi.org/10.1155/s1085337502204133.
Full textHeadrick, Matthew. "Decay ofC/Zn: exact supergravity solutions." Journal of High Energy Physics 2004, no. 03 (2004): 025. http://dx.doi.org/10.1088/1126-6708/2004/03/025.
Full textLI, HAI-LIANG, GUOJING ZHANG, and KAIJUN ZHANG. "ALGEBRAIC TIME DECAY FOR THE BIPOLAR QUANTUM HYDRODYNAMIC MODEL." Mathematical Models and Methods in Applied Sciences 18, no. 06 (2008): 859–81. http://dx.doi.org/10.1142/s0218202508002887.
Full textDENG, YINBIN, and YI LI. "EXPONENTIAL DECAY OF THE SOLUTIONS FOR NONLINEAR BIHARMONIC EQUATIONS." Communications in Contemporary Mathematics 09, no. 05 (2007): 753–68. http://dx.doi.org/10.1142/s0219199707002629.
Full textHe, Cheng, and Zhouping Xin. "On the decay properties of solutions to the non-stationary Navier–Stokes equations in R3." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 3 (2001): 597–619. http://dx.doi.org/10.1017/s0308210500001013.
Full textHe, Cheng, та Zhouping Xin. "On the decay properties of solutions to the non-stationary Navier-Stokes equations in ℝ3". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, № 3 (2001): 597–619. http://dx.doi.org/10.1017/s0308210501000269.
Full textMoroz, Vitaly, and Jean van Schaftingen. "Existence, Stability and Oscillation Properties of Slow-Decay Positive Solutions of Supercritical Elliptic Equations with Hardy Potential." Proceedings of the Edinburgh Mathematical Society 58, no. 1 (2014): 255–71. http://dx.doi.org/10.1017/s0013091513000588.
Full textPAYNE, L. E., and G. A. PHILIPPIN. "DECAY BOUNDS FOR SOLUTIONS OF SECOND ORDER PARABOLIC PROBLEMS AND THEIR DERIVATIVES." Mathematical Models and Methods in Applied Sciences 05, no. 01 (1995): 95–110. http://dx.doi.org/10.1142/s0218202595000061.
Full textDissertations / Theses on the topic "Decay of solutions"
Caner, Evin. "Limestone Decay In Historic Monuments And Consolidation With Nanodispersive Calcium Hydroxide Solutions." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613267/index.pdf.
Full textKronthaler, Johann. "Decay of solutions of the scalar wave equation in the Schwarzschild geometry." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985139420.
Full textYagdjian, Karen, and Anahit Galstian. "Fundamental solutions for wave equation in de Sitter model of universe." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3027/.
Full textSmith, Dale T. "Expotential decay of resolvents of banded matrices and asymptotics of solutions of linear difference equations." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/29218.
Full textPohl, Marvin Nicolas [Verfasser]. "Intermolecular Electronic Decay in Aqueous Solutions: A Liquid-Phase Photoelectron Spectroscopy Study / Marvin Nicolas Pohl." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176705776/34.
Full textTreude, Jan-Hendrik Verfasser], and Felix [Akademischer Betreuer] [Finster. "Decay in outgoing null directions of solutions of the massive Dirac equation in certain asymptotically flat, static spacetimes / Jan-Hendrik Treude. Betreuer: Felix Finster." Regensburg : Universitätsbibliothek Regensburg, 2015. http://d-nb.info/107616109X/34.
Full textOttosson, Niklas. "Aqueous Solutions as seen through an Electron Spectrometer : Surface Structure, Hydration Motifs and Ultrafast Charge Delocalization Dynamics." Doctoral thesis, Uppsala universitet, Yt- och gränsskiktsvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151435.
Full textTristani, Isabelle. "Existence et stabilité de solutions fortes en théorie cinétique des gaz." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090013/document.
Full textFeng, Yuehong. "Stabilité de solutions régulières pour des systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22484/document.
Full textLima, Lidiane dos Santos Monteiro 1984. "Sobre uma família de EDP's do tipo escalar ativo em espaços críticos de Lebesgue e Fourier-Besov-Morrey." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307595.
Full textBooks on the topic "Decay of solutions"
Parker, L. V. Additional studies on the softening of rigid PVC by aqueous solutions of organic solvents. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1995.
Find full textMarino, Zennaro, ed. Numerical methods for delay differential equations. Clarendon Press, 2003.
Find full textBuchacker, Ullrich. Ein neues Verfahren zur numerischen Behandlung von retardierten Anfangswertproblemen. Selbstverlag des Mathematischen Instituts, 1988.
Find full textHyberbolic [sic] periodic solutions, heteroclinic connections, and transversal homoclinic points in autonomous differential delay equations. American Mathematical Society, 1989.
Find full textHans-Otto, Walther, and Wu Jianhong, eds. Shape, smoothness, and invariant stratification of an attracting set for delayed monotone positive feedback. American Mathematical Society, 1999.
Find full textHayashi, Hiroshi. Numerical solution of retarded and neutral delay differential equations using continuous Runge-Kutta methods. University of Toronto, Dept. of Computer Science, 1996.
Find full textHelping find innovative and cost-effective solutions to overburdened state criminal courts: Hearing before the Subcommittee on Crime and Drugs of the Committee on the Judiciary, United States Senate, One Hundred Eleventh Congress, second session, May 3, 2010, Philadelphia, Pennsylvania. U.S. G.P.O., 2010.
Find full textUnited States. Congress. Senate. Committee on the Judiciary. Subcommittee on Administrative Oversight and the Courts. Revisiting proposals to split the Ninth Circuit: An inevitable solution to a growing problem : hearing before the Subcommittee on Administrative Oversight and the Courts of the Committee on the Judiciary, United States Senate, One Hundred Ninth Congress, first session, October 26, 2005. U.S. G.P.O., 2005.
Find full textAgmon, Shmuel. Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operations. Princeton University Press, 2016.
Find full textBook chapters on the topic "Decay of solutions"
Nicola, Fabio, and Luigi Rodino. "Exponential Decay and Holomorphic Extension of Solutions." In Global Pseudo-Differential Calculus on Euclidean Spaces. Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8512-5_8.
Full textQin, Yuming, and Zhiyong Ma. "Energy Decay for Thermoviscoelastic Systems." In Global Well-posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1714-8_9.
Full textde Figueiredo, Djairo G., and Yang Jianfu. "Decay, Symmetry and Existence of Solutions of Semilinear Elliptic Systems." In Djairo G. de Figueiredo - Selected Papers. Springer International Publishing, 1998. http://dx.doi.org/10.1007/978-3-319-02856-9_30.
Full textTomisaki, Matsuyo. "Power order decay of elementary solutions of generalized diffusion equations." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078510.
Full textNanbu, Tokumori. "Existence and Decay of Solutions of Some Nonlinear Degenerate Parabolic Equations." In Direct and Inverse Problems of Mathematical Physics. Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3214-6_17.
Full textFernández, José R., Antonio Magaña, and Ramón Quintanilla. "On the Exponential Decay of Solutions in Dual-Phase-Lag Porous Thermoelasticity." In 11th Chaotic Modeling and Simulation International Conference. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15297-0_6.
Full textLasiecka, I., and W. Heyman. "Maximal Decay Rates and Asymptotic Behavior of Solutions in Nonlinear Elastic Structures." In Optimal Design and Control. Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-0839-6_15.
Full textTrivisa, Konstantina. "Decay and Uniqueness of Solutions of Nonlinear Hyperbolic Conservation Laws via Generalized Characteristics." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8724-3_47.
Full textBenaissa, Abbes, and Salim A. Messaoudi. "Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term." In Progress in Partial Differential Equations. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00125-8_1.
Full textQin, Yuming, and Zhiyong Ma. "Energy Decay for a Timoshenko-Type System with a Past History." In Global Well-posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1714-8_3.
Full textConference papers on the topic "Decay of solutions"
Ogawa, Takayoshi. "Decay and asymptotic behavior of solutions of the Keller–Segel system of degenerate and nondegenerate type." In Self-Similar Solutions of Nonlinear PDE. Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc74-0-10.
Full textBrenner, Philip. "On the Lp-decay and local energy decay of solutions to nonlinear Klein-Gordon equations." In Evolution Equations Propagation Phenomena - Global Existence - Influence of Non-Linearities. Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc60-0-7.
Full textKrasnopevtceva, Marina, Victor Belik, Daria Gorbenko, Irina Semenova, Andrey Smolin, and Oleg Vasyutinskii. "Anisotropic decay of polarized fluorescence of FAD in water-methanol solutions." In Ultrafast Nonlinear Imaging and Spectroscopy VIII, edited by Zhiwen Liu, Demetri Psaltis, and Kebin Shi. SPIE, 2020. http://dx.doi.org/10.1117/12.2567943.
Full textGangopadhyay, S., M. W. Pleil, and W. L. Borst. "Fluorescence Decay Kinetics Of Polyester Yellow In Solutions And In Polymers." In OE/LASE '89, edited by E. R. Menzel. SPIE, 1989. http://dx.doi.org/10.1117/12.951549.
Full textAdibi-Asl, R., and R. Seshadri. "Decay Length in Pressure Vessels." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-66135.
Full textNANBU, TOKUMORI. "ON SOME DECAY ESTIMATES OF SOLUTIONS FOR SOME NONLINEAR DEGENERATE DIFFUSION EQUATIONS." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0116.
Full textShen, Guolun, and Yaojun Ye. "On the decay of global solutions for some nonlinear damped higher order wave equations." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691387.
Full textYe, Yaojun. "Decay Estimates of Global Solutions for Some Model Equation Long Wave in Nonlinear Dispersion." In 2009 First International Conference on Information Science and Engineering. IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.452.
Full textGrinstein, Fernando F. "Implicit Large-Eddy Simulation of Transition and Turbulence Decay." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5451.
Full textRomanovsky, Yury M., Andrey Y. Chikishev, Stanislav V. Kroo, and Alexei V. Netrebko. "Computer simulation of the decay of nonlinear subglobular oscillations in aqueous solutions of protein molecules." In International Symposium on Biomedical Optics, edited by Alexander V. Priezzhev and Gerard L. Cote. SPIE, 2002. http://dx.doi.org/10.1117/12.468317.
Full textReports on the topic "Decay of solutions"
Temple, B. Decay with a Rate for Noncompactly Supported Solutions of Conservation Laws. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada158163.
Full textSun, Y. A Collection of Analytical Solutions for England and Rider Decay Networks. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1781761.
Full textCloutman, L. Analytic solutions for the decay of turbulent swirling flow in a cylinder. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5110095.
Full textHald, Ole H., Yelena Shvets, and Panagiotis Stinis. Application of the t-model of optimal prediction to the estimationof the rate of decay of solutions of the Euler equations in two and threedimensions. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/919384.
Full textGilsinn, David E. Approximating periodic solutions of autonomous delay differential equations. National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.ir.7375.
Full textBartels, D. M. Atomic hydrogen reaction rates in aqueous solution via free-induction decay attenuation. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/198837.
Full textErneux, Thomas. Bridges of Periodic Solutions and Tori in Semiconductor Lasers Subject to Delay. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada388272.
Full textSchock, Alfred. Closed-Form Solution for the Effect of Fuel Decay and Thermoelectric Degradation on Output of SiGe RTGs. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/1033353.
Full textKodupuganti, Swapneel R., Sonu Mathew, and Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, 2021. http://dx.doi.org/10.31979/mti.2021.1802.
Full textSen, Aditi, and Nafkote Dabi. Tightening the Net: Net zero climate targets – implications for land and food equity. Oxfam, 2021. http://dx.doi.org/10.21201/2021.7796.
Full text