Academic literature on the topic 'Decision classification trees discriminant random forest'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decision classification trees discriminant random forest.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decision classification trees discriminant random forest"
Koreň, Milan, Rastislav Jakuš, Martin Zápotocký, et al. "Assessment of Machine Learning Algorithms for Modeling the Spatial Distribution of Bark Beetle Infestation." Forests 12, no. 4 (2021): 395. http://dx.doi.org/10.3390/f12040395.
Full textGómez, Jorge Gómez, Urueta Camilo Parra, Daniel Salas Álvarez, Riaño Velssy Hernández, and Gustavo Ramirez-Gonzalez. "Anemia Classification System Using Machine Learning." Informatics 12, no. 1 (2025): 19. https://doi.org/10.3390/informatics12010019.
Full textAsia, Mahdi Naser Alzubaidi, and Salih Al-Shamery Eman. "Projection pursuit Random Forest using discriminant feature analysis model for churners prediction in telecom industry." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 2 (2020): 1406–21. https://doi.org/10.11591/ijece.v10i2.pp1406-1421.
Full textManisha Sharma. "Improving the Accuracy of Epileptic Seizure Detection through EEG Analysis: A Comprehensive Classification Strategy." Journal of Information Systems Engineering and Management 10, no. 28s (2025): 77–85. https://doi.org/10.52783/jisem.v10i28s.4299.
Full textAkanbi, Olatunde David, Taiwo Mercy Faloni, and Sunday Olaniyi. "Prediction of Wine Quality: Comparing Machine Learning Models in R Programming." International Journal of Latest Technology in Engineering, Management & Applied Science 11, no. 09 (2022): 01–06. http://dx.doi.org/10.51583/ijltemas.2022.11901.
Full textKrishnarjun, Bora, Pratim Barman Manash, N. Patowary Arnab, and Bora Toralima. "Classification of Assamese Folk Songs' Melody using Supervised Learning Techniques." Indian Journal of Science and Technology 16, no. 2 (2023): 89–96. https://doi.org/10.17485/IJST/v16i2.1686.
Full textNjimi, Houssem, Nesrine Chehata, and Frédéric Revers. "Fusion of Dense Airborne LiDAR and Multispectral Sentinel-2 and Pleiades Satellite Imagery for Mapping Riparian Forest Species Biodiversity at Tree Level." Sensors 24, no. 6 (2024): 1753. http://dx.doi.org/10.3390/s24061753.
Full textKhan, Haroon, Farzan M. Noori, Anis Yazidi, Md Zia Uddin, M. N. Afzal Khan, and Peyman Mirtaheri. "Classification of Individual Finger Movements from Right Hand Using fNIRS Signals." Sensors 21, no. 23 (2021): 7943. http://dx.doi.org/10.3390/s21237943.
Full textAtish, S. Tangawade, and A. Muley Aniket. "Classification of Parkinson's Disease Data Using Traditional and Advanced Data Mining Techniques." Indian Journal of Science and Technology 17, no. 11 (2024): 1043–50. https://doi.org/10.17485/IJST/v17i11.3059.
Full textElisabeth, Thomas, Saji Arjun, M. S. Aswin, Salas Augustine, and Viju Emil. "A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning." International Journal on Emerging Research Areas (IJERA) 04, no. 02 (2025): 7–12. https://doi.org/10.5281/zenodo.14642932.
Full textDissertations / Theses on the topic "Decision classification trees discriminant random forest"
Tandan, Isabelle, and Erika Goteman. "Bank Customer Churn Prediction : A comparison between classification and evaluation methods." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411918.
Full textКичигіна, Анастасія Юріївна. "Прогнозування ІМТ за допомогою методів машинного навчання". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/37413.
Full textAlves, Ana Sofia Tavares Jordão. "Time series classification for device fingerprinting: internship project at a telecommunications and technology company." Master's thesis, 2021. http://hdl.handle.net/10362/112035.
Full textBook chapters on the topic "Decision classification trees discriminant random forest"
El-Nasr, Magy Seif, Truong Huy Nguyen Dinh, Alessandro Canossa, and Anders Drachen. "Supervised Learning in Game Data Science." In Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.003.0007.
Full textWang Qing, Zhang Liang, Chi Mingmin, and Guo Jiankui. "MTForest: Ensemble Decision Trees based on Multi-Task Learning." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2008. https://doi.org/10.3233/978-1-58603-891-5-122.
Full textPascual-Fontanilles, Jordi, Lenka Lhotska, Antonio Moreno, and Aida Valls. "Adapting a Fuzzy Random Forest for Ordinal Multi-Class Classification." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220336.
Full textPascual-Fontanilles, Jordi, Aida Valls, Antonio Moreno, and Pedro Romero-Aroca. "Iterative Update of a Random Forest Classifier for Diabetic Retinopathy." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210136.
Full textXu, Ning, Jiangping Wang, Guojun Qi, Thomas S. Huang, and Weiyao Lin. "Ontological Random Forests for Image Classification." In Computer Vision. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5204-8.ch031.
Full textVijaya Lakshmi, Adluri, Sowmya Gudipati Sri, Ponnuru Sowjanya, and K. Vedavathi. "Prediction using Machine Learning." In Handbook of Artificial Intelligence. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815124514123010005.
Full textA.C. Minho, Lucas, Bárbara E.A. de Magalhães, and Alexandre G.M. de Freitas. "Potential Use of Tree-based Tools for Chemometric Analysis of Infrared Spectra." In Advances in Computing Communications and Informatics. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815040401122030005.
Full textMondal, Anoushka, and Sudhanshu Sudhakar Dubey. "Machine Learning-based Water Potability Prediction: Model Evaluation, and Hyperparameter Optimization." In Advancements in Communication and Systems. Soft Computing Research Society, 2024. http://dx.doi.org/10.56155/978-81-955020-7-3-4.
Full textGhose Soumya, Mitra Jhimli, Khanna Sankalp, and Dowling Jason. "An Improved Patient-Specific Mortality Risk Prediction in ICU in a Random Forest Classification Framework." In Studies in Health Technology and Informatics. IOS Press, 2015. https://doi.org/10.3233/978-1-61499-558-6-56.
Full textQin, Meng. "A Software Code Infringement Detection Scheme Based on Integration Learning." In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231264.
Full textConference papers on the topic "Decision classification trees discriminant random forest"
Pirić, David, and Romana Masnikosa. "PERFORMANCE OF RANDOM FORESTS, EXTREME GRADIENT BOOSTING AND SUPPORT VECTOR MACHINES EMPLOYED IN LIPIDOMICS." In 17th International Conference on Fundamental and Applied Aspects of Physical Chemistry. Society of Physical Chemists of Serbia, 2024. https://doi.org/10.46793/phys.chem24i.223p.
Full textSakai, Hajar. "Machine Learning Approaches for Stroke Classification." In 2023 IISE Annual Conference & Expo. Curran Associates, Inc., 2023. http://dx.doi.org/10.21872/2023iise_1127.
Full textAl-Khudafi, Abbas M., Hamzah A. Al-Sharifi, Ghareb M. Hamada, Mohamed A. Bamaga, Abdulrahman A. Kadi, and A. A. Al-Gathe. "Evaluation of Different Tree-Based Machine Learning Approaches for Formation Lithology Classification." In International Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/igs-2023-0026.
Full textMoghadam, Armin, and Fatemeh Davoudi Kakhki. "Comparative Study of Decision Tree Models for Bearing Fault Detection and Classification." In Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100968.
Full textAmagada, P. U. "An Inferable Machine Learning Approach for Reservoir Lithology Characterization Using Drilling Data." In SPE Annual Technical Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217485-stu.
Full textOliveira, Gustavo Henrique de, and Franklin César Flores. "Classification of heart arrhythmia by digital image processing and machine learning." In Seminário Integrado de Software e Hardware. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/semish.2023.230225.
Full textAl-Sharifi, H. A., A. M. Alkhudafi, A. A. Al-Gathe, S. O. Baarimah, Wahbi Al-Ameri, and A. T. Alyazidi. "Prediction of Two-Phase Flow Regimes in Vertical Pipes Using Tree-Based Ensemble Models." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24084-ms.
Full textMarsh, Kennedy, Clifton Wallace, Jeffrey Hernandez, Rodney Dejournett, Xiaohong Yuan, and Kaushik Roy. "Authentication Based on Periocular Biometrics and Skin Tone." In 2022 KSU CONFERENCE ON CYBERSECURITY EDUCATION, RESEARCH AND PRACTICE. Kennesaw State University, 2022. http://dx.doi.org/10.32727/28.2023.6.
Full textIdogun, Akpevwe Kelvin, Ruth Oyanu Ujah, and Lesley Anne James. "Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/208452-ms.
Full textLeal Jauregui, Jairo Alonso, Alfredo Jose Arevalo Lopez, Mohammed Atwi, and Daniel Alejandro Leal Leal. "A New Approach to Choke Flow Models Using Machine Learning Algorithms." In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22168-ms.
Full textReports on the topic "Decision classification trees discriminant random forest"
Alwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full text