Dissertations / Theses on the topic 'Décomposition généralisée propre'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Décomposition généralisée propre.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nguyen, Tuan Linh. "La Décomposition propre généralisée pour la résolution de problèmes multiphysiques transitoires couplés dédiés à la mécanique des matériaux." Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2012. https://theses.hal.science/docs/00/78/59/85/PDF/manuscrit_final_NGUYEN_Tuan_Linh_ENSMA_Poitiers_v2B.pdf.
Full textThis work presents the development of the Proper Generalized Decomposition (PGD) method for solving couple transient multiphysics problems with different characteristic times. This method consists in approximating solutions ( Partial Differentiai Equations with separated representations. The 2D transient heat equation is initially considered. A automatic adaptive mesh technique is proposed in order to make the discretization fit the different transient domains. Tw different couplings between the PGD method and the adaptive mesh refinement technique are discussed: the frrst on consists in computing the PGD solution for each new mesh from the null solution; the second one consists in enrichin the PGD solution for each new mesh from the basis functions generated on the previous meshes. The frrst coupling. More efficient since fewer modes are required to accurately describe the solution on the final mesh. Nevertheless, th second one decreases the number of enrichments cumulated tbrough the mesh refmement pro cess. Regardless of th coupling used, the adaptive mesh technique is able to automatically describe the localized transient zones. The II transient heat equation with a non linear source term is also studied. A new approach combining the PGD method and th Asymptotic Numerical Method (ANM) is tested, which allows to efficiently solve sorne families of non linear transiel problems. Finally, two muItitime and multiphysics problems are considered. It consists of a partially coupled he diffusion problem and a strongly coupled thermoviscoelastic problem. The PGD method gives an accurate prediction c the response of these muItiphysics problems for which the coupling terms lead to specific transient zones. Combined wit the PGD method, the adaptive mesh technique is particularly suitable for these situations of strongly coupled tim multiscale. This combination brings to the same conclusions as in the case of a single physical phenomenon. The discussion focuses on two strategies of mesh construction: concatenating the time meshes of each physical phenomeno or refme each mesh independently. The concatenation of two meshes allows a convergence with fewer steps of mes refmement but with a much bigher mesh density
Qin, Zhi. "Finite element modelling and PGD based model reduction for piezoelectric and magnetostrictive materials." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066566/document.
Full textThe energy harvesting technology that aims to enable wireless sensor networks (WSN) to be maintenance-free, is recognized as a crucial part for the next generation technology mega- trend: the Internet of Things (IoT). Piezoelectric and magnetostrictive materials, which can be used in a wide range of energy harvesting systems, have attracted more and more interests during the past few years. This thesis focuses on multiphysics finite element (FE) modeling of these two materials and performing model reduction for resultant systems, based on the Prop- er Generalized Decomposition (PGD). Modeling these materials remains challenging although research in this area has been under- going over decades. A multitude of difficulties exist, among which the following three issues are largely recognized. First, mathematically describing properties of these materials is com- plicated, which is particularly true for magnetostrictive materials because their properties depend on factors including temperature, stress and magnetic field. Second, coupling effects between electromagnetic, elastic, and thermal fields need to be considered, which is beyond the capability of most existing simulation tools. Third, as systems becoming highly integrated whole-scale simulations become necessary, which means three dimensional (3D) numerical models should be employed. 3D models, on the other hand, quickly turns intractable if not properly built. The work presented here provides solutions in respond to the above challenges. A differential forms based multiphysics FE framework is first established. Within this frame- work quantities are discreted using appropriate Whitney elements. After discretization, the system is solved as a single block, thus avoiding iterations between different physics solutions and leading to rapid convergences. Next, the linear piezoelectric, and a free energy based nonlinear magnetostrictive constitutive model called Discrete Energy Averaged Model (DE- AM) are incorporated into the framework. Our implementation describes underlying material behaviors at reasonable numerical costs. Eventually, two novel PGD based algorithms for model reduction are proposed. With our algorithms, problem size of multiphysics models can be significantly reduced while final results of very good accuracy are obtained. Our algo- rithms also provide means to handle coupling and nonlinearity conveniently. All our methodologies are demonstrated and verified via representative examples
Oulghelou, Mourad. "Développement de modèles réduits adaptatifs pour le contrôle optimal des écoulements." Thesis, La Rochelle, 2018. http://www.theses.fr/2018LAROS014/document.
Full textThe numerical resolution of adjoint based optimal control problems requires high computational time and storage capacities. In order to get over these high requirement, it is possible to use model reduction techniques such as POD (Proper Orthogonal Decomposition). The disadvantage of this approach is that the POD basis is valid only for parameters located in a small neighborhood to the parameters for which it was built. Therefore, this basis may not be representative for all parameters in the optimizer’s path eventually suggested by the optimal control loop. To overcome this issue, a reduced optimal control methodology using adaptive reduced order models obtained by the ITSGM (Interpolation on a Tangent Subspace of the Grassman Manifold) method or by the PGD (Proper Generalized Decomposition) method, has been proposed in this work. The robustness of this approach in terms of precision and computation time has been demonstrated for the optimal control (based on adjoint equations) of the 2D reaction-diffusion and Burgers equations. The interpolation method ITSGM has also been validated in the control of flow around a 2D cylinder. In the context of non intrusive model reduction, two non intrusive reduction methods, which do not require knowledge of the equations of the studied model, have also been proposed. These methods called NIMR (Non-Intrusive Model Reduction) and HNIMR (Hyper Non-Intrusive Model Reduction) were developed and then coupled to a genetic algorithm in order to solve an optimal control problem in quasi-real time. The problem of optimal control of the flow around a 2D cylinder has been studied and the results have shown the effectiveness of this approach. Indeed, the genetic algorithm coupled with the HNIMR method allowed to obtain the solutions with a good accuracy in less than 40 seconds
Saleh, Marwan. "Étude mathématique et numérique des méthodes de réduction dimensionnelle de type POD et PGD." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS004/document.
Full textThis thesis is formed of four chapters. The first one presents the mathematical notions and tools used in this thesis and gives a description of the main results obtained within. The second chapter presents our generalization of a result obtained by Rousselet-Chenais in 1990 which describes the sensitivity of eigensubspaces for self-adjoint compact operators. Rousselet-Chenais were limited to sensitivity for specific subspaces of dimension 1, we have extended their result to higher dimensions. We applied our results to the Proper Orthogonal Decomposition (POD) in the case of parametric, temporal and spatial variations (Gappy- POD). The third chapter discusses the optical flow estimate with quadratic or linear energies at infinity. Mathematical results of convergence are shown for the method Progressive Generalized Decomposition (PGD) in the case of quadratic energies. Our proof is based on the decomposition of Brézis-lieb via the convergence almost everywhere of the PGD sequence gradients. A detailed numerical study is made on different types of images : on the passive scalar transport equations, whose displacement fields are solutions of the Navier-Stokes equations. These equations present a challenge for optical flow estimates because of the presence of low gradient regions in the image. We applied our method to the MRI image sequences to estimate the movement of the abdominal organs. PGD presented a superiority in both computing time level (even in 2D) and accuracy representation of the estimated motion. The local diffusion of standard methods (Horn Schunck, for example) limits the convergence rate, in contrast to the PGD which is a more global approach by construction. The last chapter deals with the application of PGD method in the case of variational elliptic equations whose energy present all challenges to classical variational methods : lack of convexity, lack of coercivity and lack of boundedness. We prove convergence results for the weak topology, the PGD sequences converge (when they are well defined) to two extremal solutions on the Nehari manifold. Several mathematical questions about PGD remain open in this chapter. These questions are part of our research perspectives
Metoui, Sondes. "Separated représentations for th multiscale simulation of the mechanical behavior and damages of composite materials." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0049/document.
Full textSeparated representations for the multiscale simulation of the mechanicalbehavior and damages of composite materials.Abstract: The development of efficient simulations for composite structures is very challengingdue to the multiscale nature and the complex damage process of this materials. When usingstandard 3D discretization techniques with advanced models for large structures, the computationalcosts are generally prohibitive.In this thesis, a new strategy based on a separated represenation of the solution is explored todevelop a computationally efficient and reliable numerical framework for the analysis of damagesin laminated composites subjected to quasi-static and dynamic loading. The PGD (Proper GeneralizedDecomposition) is used to build the solution.To treat damage, and especially delamination, a cohesive zone model has been implemented inthe PGD solver. A novel multiscale approach is also proposed to compute the mechanical behaviorof composites with periodic microstructure. The idea is to separate two scales: the scaleof periodic pattern and the macroscopic scale. The PGD results have been compared with theresults obtained with the classcial finite element method. A close agreement is found between thetwo approach and the PGD has significantly reduced the model complexity
Maitrejean, Guillaume. "Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENI067/document.
Full textThis work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used
Paillet, Charles. "Nouvelles démarches de réduction de modèles pour le traitement des problèmes à très grand nombre de paramètres." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN015/document.
Full textNumerical simulation is nowadays a major tool in a large number of engineering fields. Nevertheless, even the recent incredible improvements of the computational power can hardly compensate the increasing complexity of the models used by engineers. In this context, Reduced Order Models (ROM) can be major decision-maker tools because, once they have been computed, they can be used to evaluate a very large number of test cases in a duration close to real time. The PGD (Proper Generalized Decomposition) in particular, is a method introduced at the LMT which has been adapted to many cases (non-linear problems, multiscale, multiphysics) and leads to savings of CPU time reaching several orders of magnitude.Unfortunately, it is currently difficult to build ROM with an increasing number of parameters. All the actual model reduction technics (including the PGD) can hardly solve problems with a high number of parameters (the current limit is about twenty parameters). It is a major barrier to a larger development of these methods. This PhD thesis presents a new methodology based on the PGD able to take into account high numbers of parameters.This goal has been achived thanks to three major contributions. First, a new data structure faithfull to mecanical properties of the problem has been developed. To that end, two different scales are introduced in the parametric space, giving its name to our method : Parameter-Multiscale PGD. Furthermore, the WTDG (Weak Treffz Discontinuous Galerkin) method has been inpemented. It is a discontinuous spatial discretisation adapted to our resolution techniques. Finally, new algorithms have been developed to built reduced order models of problems taking into account up to one thousand parameters
Al, Takash Ahmad. "Development of Numerical Methods to Accelerate the Prediction of the Behavior of Multiphysics under Cyclic Loading." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0014/document.
Full textIn the framework of structural calculation, the reduction of computation time plays an important rolein the proposition of failure criteria in the aeronautic and automobile domains. Particularly, the prediction of the stabilized cycle of polymer under cyclic loading requires solving of a thermo-viscoelastic problem with a high number of cycles. The presence of different time scales, such as relaxation time (viscosity), thermal characteristic time (thermal), and the cycle time (loading) lead to a huge computation time when an incremental scheme is used such as with the Finite Element Method (FEM).In addition, an allocation of memory will be used for data storage. The objective of this thesis isto propose new techniques and to extend existent ones. A transient thermal problem with different time scales is considered in the aim of computation time reduction. The proposed methods are called model reduction methods. First, the Proper Generalized Decomposition method (PGD) was extended to a nonlinear transient cyclic 3D problems. The non-linearity was considered by combining the PGD method with the Discrete Empirical Interpolation Method (DEIM), a numerical strategy used in the literature. Results showed the efficiency of the PGD in generating accurate results compared to the FEM solution with a relative error less than 1%. Then, a second approach was developed in order to reduce the computation time. It was based on the collection of the significant modes calculated from the PGD method for different time scales. A dictionary assembling these modes is then used to calculate the solution for different characteristic times and different boundary conditions. This approach was adapted in the case of a weak coupled diffusion thermal problem. The novelty of this method is to consider a dictionary composed of spatio-temporal bases and not spatial only as usedin the POD. The results showed again an exact reproduction of the solution in addition to a huge time reduction. However, when different cycle times are considered, the number of modes increases which limits the usage of the approach. To overcome this limitation, a third numerical strategy is proposed in this thesis. It consists in considering a priori known time bases and is called the mixed strategy. The originality in this approach lies in the construction of a priori time basis based on the Fourier analysis of different simulations for different time scales and different values of parameters.Once this study is done, an analytical expression of time bases based on parameters such as the characteristic time and the cycle time is proposed. The related spatial bases are calculated using the PGD algorithm. This method is then tested for the resolution of 3D thermal problems under cyclic loading linear and nonlinear and a weak coupled diffusion thermal problem
Sandino, de Benito Carlos. "Global-local separated representations based on the Proper Generalized Decomposition." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0064.
Full textOne of the main advantages of the Proper Generalized Decomposition method, when compared to other model reduction methods, lies in its adequacy to compute space separated representations in Cartesian-like degenerated domains, such as plates or shells. The main objective of this thesis is to generalize space separated representations to non-Cartesian domains, by introducing the notion of Global-Local separated representations. Global-Local separated representations can be understood as a multiplicative decomposition in which the local modes capture the solution at the finer scale, while the global modes solve the coarser scale. To this aim, two strategies are proposed. The first proposal is based on the partition of unity, and combines the global and local discretization levels, based on a partition of the domain. It builds a separated representation that provides the local enrichment, without the need for a priori knowledge of the solution, nor the implementation of auxiliary local problems to determine the enrichment. The second strategy is devoted to the construction of Global-Local separated representations in a less intrusive manner, compatible with the finite element standard. Therefore, we rely on standard FEM assembly of the operators and use the PGD as an algebraic iterative solver. Continuity on the boundaries of the domain’s partition does not need to be imposed explicitly, as it comes as a built-in property of the FEM operators
Maitrejean, Guillaume. "Contributions à la modélisation numérique de la théorie cinétique des suspensions." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00681032.
Full textDjatouti, Zohra. "Amélioration de la prédiction de quantités d'intérêt par modélisation inverse : application à la thermique du bâtiment." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2006.
Full textThis work introduces an original inverse strategy for model parameter identification that can be used for onsite building characterization in view of energy performance assessment and as a tool of decision-making during energy retrofitting of existing buildings. Unlike the standard global inverse approaches such as Tikhonov regularization method that aim at identifying all the model parameters in order to best fit the measurement data, the goal-oriented inverse method is formulated for a robust prediction of a quantity of interest. Thus, it only updates the model parameters that most affect the computation of the sought quantity of interest. In order to optimize the computation time, the goal-oriented inverse method is combined with the Proper Generalized Decomposition (PGD) model order reduction method. The proposed identification strategy is applied to two existing buildings part of the equipment “Sense-City” that were instrumented for this purpose. The results show that the goal-oriented inverse method robustly predicts the sought quantities of interest by only updating the model parameters to which they are sensitive and it converges faster than the Tikhonov regularization method. Finally, the proposed inverse strategy can be applied to occupied buildings and extended to the district scale. It can also be used for the optimal placement of sensors
Tertrais, Hermine. "Développement d’un outil de simulation pour le chauffage de matériaux composites par micro-ondes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0061/document.
Full textThe context of the present work is the development of new processes for the heating and forming of composite materials in order to provide an answer to the industrials needs for less energy and less time-consuming processes. In that sense, microwave heating is perfect match as it relies on volumetric heating. The major drawback is that the behaviour of the electric field while interacting with composite material is poorly known. Therefore, the main objective of this thesis is to provide numerical solutions to go more deeply in the understanding of such process and put forward its capabilities for an industrial development.To fulfil this objective, the work is oriented over three main axes. First, an innovative simulation tool is presented in order to solve the Maxwell’s equations in a thin multi layered domain. Taking into account the 3D behaviour of the electric field is a major issue in order to describe precisely the impact of the different plies of the laminate on the propagation of the electric field.Then, the electromagnetic simulation is coupled with a thermal simulation in order to simulate the full heating process of a composite part. Parameters of the process are investigated to bring forward the most crucialones. Finally, real-time control of the process is tackled using a model order reduction simulation technique. These results are compared to experimental work on two sets of samples
Ramazzotti, Andrea. "Contribution au développement de méthodes numériques destinées à résoudre des problèmes couplés raides rencontrés en mécanique des matériaux." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0007/document.
Full textThis work presents the development of the Proper Generalized Decomposition (PGD) method for solving stiff reaction-diffusion equations in the framework of mechanics of materials. These equations are particularly encountered in the oxidation of polymers and it is therefore necessary to develop a tool to simulate this phenomenon for example for the ageing of organic matrix composites in aircraft application. The PGD method has been chosen in this work since it allows a large time saving compared to the finite element method. However this family of equations has never been dealt with this method. The PGD method consists in approximating a solution of a Partial Differential Equation with a separated representation. The solution is sought under a space-time separated representation for a 1D transient equation.In this work, a numerical tool has been developed allowing a flexibility to test different algorithms. The 1D Fickian diffusion is first evaluated and two numerical schemes, Euler and Runge-Kutta adaptive methods, are discussed for the determination of the time modes. The Runge-Kutta method allows a large time saving. The implementation of the numerical tool for reaction-diffusion equations requires the use of specific algorithms dedicated to nonlinearity, couplingand stiffness. For this reason, different algorithms have been implemented and discussed. For nonlinear systems, the use of the Newton-Raphson algorithm at the level of the iterations to compute the new mode allows time saving by decreasing the number of modes required for a given precision. Concerning the couplings, two strategies have been evaluated. The strong coupling leads to the same conclusions as the nonlinear case. The linear stiff systems are then studied by considering a dedicated method, the Rosenbrock method, for the determination of the time modes. This algorithm allows time saving compared to the Runge-Kutta method. The solution of a realistic nonlinear stiff reaction-diffusionsystem used for the prediction of the oxidation of a composite obtained from the literature has been tested by using the various implemented algorithms. However, the nonlinearities and the stiffness of the system generate differential equations with variable coefficients for which the Rosenbrock method is limited. It will be necessary to test or develop other algorithms to overcome this barrier
Giacoma, Anthony. "Efficient acceleration techniques for non-linear analysis of structures with frictional contact." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0095.
Full textComputational mechanics is an essential tool for mechanical engineering purposes. Nowadays, numerical models have to take into account complex physical phenomenons to be even more realistic and become larger and larger. As a consequence, more and more computing capacities are required in order to tackle not only non-linear problems but also large scale problems. For that purpose, both computers and numerical methods have to be developed in order to solve them efficiently. In the last decades, model reduction methods show great abilities to assign such challenges. The frictional contact problem between elastic solids is particularly well-known for its difficulty. Because its governing laws are highly non-linear (non-smooth), prohibitive computational time can occur. In this dissertation, model reduction methods (both a posteriori and a priori approaches) are deployed in order to implement efficient numerical methods to solve frictional contact problem in the finite element framework. First, small perturbations hypothesis with a quasi-static evolution are assumed. Then, reducibility of some frictional solutions is emphasized and discussed using the singular value decomposition. In addition, a scale separability phenomenon is enlightened. Then, the non-linear large time increment method (LATIN) is introduced. Secondly, an accelerated LATIN method is suggested by drawing an analogy between previous scale separability observations and the non-linear multigrid full approximation scheme (FAS). This accelerated non-linear solver relies essentially on the a posteriori model reduction approach. A precomputation strategy for modes relying on surrogate models is also suggested. Next, the proper generalized decomposition (PGD) is used to implement a non-linear solver relying fundamentally on an a priori model reduction method. Finally, some extensions are given to assign parametric studies and to take into account an additional non-linearity such as elastoplastic constitutive laws
Bonithon, Gaël. "Méthodes numériques innovantes pour la simulation thermique de composants électroniques." Phd thesis, Paris, ENSAM, 2010. http://pastel.archives-ouvertes.fr/pastel-00547880.
Full textGiraldi, Loïc. "Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique." Phd thesis, Ecole centrale de nantes - ECN, 2012. http://tel.archives-ouvertes.fr/tel-00861986.
Full textMontier, Laurent. "Application de méthodes de réduction de modèles aux problèmes d'électromagnétisme basse fréquence." Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0029/document.
Full textIn the electrical engineering field, numerical simulation allows to avoid experiments which can be expensive, difficult to carry out or harmful for the device. In this context, the Finite Element Method has become to be one of the most used approach since it allows to obtain precise results on devices with complex geometries. However, these simulations can be computationally expensive because of a large number of unknowns and time-steps, and of strong nonlinearities of ferromagnetic materials to take into account. Numerical techniques to reduce the computational effort are thus needed. In this context, model order reduction approaches seem well adapted to this kind of problem since they have already been successfully applied to many engineering fields, among others, fluid and solid mechanics. A first class of methods allows to seek the solution in a reduced basis, allowing to dramatically reduce the number of unknowns of the numerical model. The most famous technics are probably the Proper Orthogonal Decomposition, the Proper Generalized Decomposition and the Arnoldi Projection. The second class of approaches consists of methods allowing to reduce the computational cost associated to nonlinearities, using interpolation methods like the Empirical Interpolation Method and the Gappy POD. This Ph.D. has been done within the LAMEL, the joint laboratory between the L2EP and EDF R&D, in order to identify and implement the model order reduction methods which are the most adapted to electrical engineering models. These methods are expected to reduce the computational cost while taking into account the motion of an electrical machine rotor, the nonlinearities of the ferromagnetic materials and also the mechanical and electrical environment of the device. Finally, an error indicator which evaluates the error introduced by the reduction technic has been developed, in order to guarantee the accuracy of the results obtained with the reduced model
Loret, François. "Décomposition sur les mouvements périodiques ou sur les modes résonants pour la simulation de la réponse transitoire d'un problème de tenue à la mer." Phd thesis, Châtenay-Malabry, Ecole centrale de Paris, 2004. http://pastel.archives-ouvertes.fr/pastel-00002503.
Full textBouyssier, Julien. "Transports couplés en géométries complexes." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1929/.
Full textThis work interest is about stationary transfer and non-stationary transport by convection-diffusion onto complex geometries. For transport issues, complex refers to convection into flattened cavity of arbitrary transverse shape, slowly varying along the longitudinal direction. In the context of transfer, complex refers to non-axisymmetric domains of arbitrary transverse shape along which one or several parallel tubes convect heat or mass. For the transfer problem, this work extends the principle, validates the use, and illustrates the efficiency of Graetz modes decompositions for exchanges prediction in realistic exchangers configurations. This decomposition permits to formulate the initial 3D problem as a generalysed 2D eigenvalue problem, the numerical evaluation of which is drastically reduced. We generalyze Graetz modes solutions for arbitrary applied lateral boundary conditions. In the particular case of balanced exchangers, we bring to the fore a new neutral mode whose longitudinal variations are linear as opposed to classical Graetz modes displaying exponential decay. The numerical computation of those modes for semi-infinite configurations with lateral periodic boundary conditions shows that a few number of those provides a very good approximation for exchanges. In the case of finite exchangers coupled with inlet/oulet tubes, we show how to evaluate the amplitudes of Graetz modes in the various domains (inlet, exchanger, outlet) from functional minimization associated with input/output boundary conditions. The evaluation of these amplitudes permit a systematic parametric study of temperature fields, heat fluxes between fluid and solid, and hot/cold performance of a couple-tube exchanger. Our results indicate that the typical exchange length is governed by the first Graetz mode at large P\'eclet number. We also show that a symmetric exchanger has a symmetric spectrum and a upward/backward symmetric evolution. In the case transport we elaborate theoretically the conservative form of 3D Taylor dispersion equations into variable cavities which generalyzes the framework already known in 2D. We numerically implement these averaged dispersion equations with finite element, and validate in 2D the obtained results. We show that 3D longitudinal variations of a cavity has a strong impact on the longitudinal dispersion
Thai, Hoang phuong. "Sur l'utilisation de l'analyse isogéométrique en mécanique linéaire ou non-linéaire des structures : certification des calculs et couplage avec la réduction de modèle PGD." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN017/document.
Full textThe topic of the PhD thesis deals with the construction of advanced numerical approaches for the simulation and optimization of mechanical structures with complex geometry. It focuses on the Isogeometric Analysis (IGA) technology which has received much attention of the last decade due to its increased flexibility, accuracy, and robustness in many engineering simulations compared to classical Finite Element Analysis (FEA). In particular, IGA enables a direct link with CAD software (the same functions are used for both analysis and geometry) and facilitates meshing procedures.In this framework, and as a first part of the work, a verification method based on duality and the concept of Constitutive Relation Error (CRE) is proposed. It enables to derive guaranteed and fully computable a posteriori error estimates on the numerical solution provided by IGA. Such estimates, which are valid for a wide class of linear or nonlinear structural mechanics models, thus constitute performing and useful tools to quantitatively control the numerical accuracy and drive adaptive procedures. The focus here is on the construction of equilibrated flux fields, which is key ingredient of the CRE concept, and which was until now almost exclusively developed in the FEA framework alone. The extension to IGA requires to address some technical issues, due to the use of B-Spline/NURBS basis functions. The CRE concept is also implemented together with adjoint techniques in order to perform goal-oriented error estimation.In a second part, IGA is coupled with model reduction in order to get certified real-time solutions to problems with parameterized geometry. After defining the parametrization on the mapping from the IGA parametric space to the physical space, a reduced model based on the Proper Generalized Decomposition (PGD) is introduced to solve the multi-dimensional problem. From an offline/online strategy, the procedure then enables to describe the manifold of parametric solutions with reduced CPU cost, and to further perform shape optimization in real-time. Here again, a posteriori estimation of the various error sources inheriting from discretization and PGD model reduction is performed from the CRE concept. It enables to control the quality of the approximate PGD solution (globally or on outputs of interest), for any geometry configuration, and to feed a robust greedy algorithm that optimizes the computational effort for a prescribed error tolerance.The overall research work thus provides for reliable and practical tools in mechanical engineering simulation activities. Capabilities and performance of these tools are shown on several numerical experiments with academic and engineering problems, and with linear and nonlinear (damage) models
Malik, Muhammad Haris. "Reduced order modeling for smart grids' simulation and optimization." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405730.
Full textCette these présente l'étude de la réduction de modeles pour les réseaux électriques et les réseaux de transmission. Un point de vue mathématique a été adopté pour la réduction de modeles. Les réseaux électriques sont des réseaux immenses et complexes, dont l'analyse et la conception nécessite la simulation et la résolution de grands modeles non-linéaires. Dans le cadre du développement de réseaux électriques intelligents (smart grids) avec une génération distribuée de puissance, l'analyse en temps réel de systemes complexes tels que ceux-ci nécessite des modeles rapides, fiables et précis. Dans la présente étude, nous proposons des méthodes de réduction de de modeles a la fois a priori et a posteriori, adaptées aux modeles dynamiques des réseaux électriques. Un accent particulier a été mis sur la dynamique transitoire des réseaux électriques, décrite par un modele oscillant nonlinéaire et complexe. La non-linéarité de ce modele nécessite une attention particuliere pour bénéficier du maximum d'avantages des techniques de réduction de modeles. lnitialement, des méthodes comme POD et LATIN ont été adoptées avec des degrés de succes divers. La méthode de TPWL, qui combine la POD avec des approximations linéaires multiples, a été prouvée comme étant la méthode de réduction de modeles la mieux adaptée pour le modele dynamique oscillant. Pour les lignes de transmission, un modele de parametres distribués en domaine fréquentiel est utilisé. Des modeles réduits de type PGD sont proposés pour le modele DP des lignes de transmission. Un probleme multidimensionnel entierement paramétrique a été formulé, avec les parametres électriques des lignes de transmission inclus comme coordonnées additionnelles de la représentation séparée. La méthode a été étendue pour étudier la solution du modele des lignes de transmission pour laquelle les parametres dépendent de la fréquence.
Esta tesis presenta un estudio de la reducción de modelos (MOR) para redes de transmisión y distribución de electricidad. El enfoque principal utilizado ha sido la dinámica transitoria y para la reducción de modelos se ha adoptado un punto de vista matemático. Las redes eléctricas son complejas y tienen un tamaño importante. Por lo tanto, el análisis y diseño de este tipo de redes mediante la simulación numérica, requiere la resolución de modelos no-lineales complejos. En el contexto del desarrollo de redes inteligentes, el objetivo es un análisis en tiempo real de sistemas complejos, por lo que son necesarios modelos rápidos, fiables y precisos. En el presente estudio se proponen diferentes métodos de reducción de modelos, tanto a priori como a posteriori, adecuados para modelos dinámicos de redes eléctricas. La dinámica transitoria de redes eléctricas, se describe mediante modelos dinámicos oscilatorios no-lineales. Esta no-linearidad del modelo necesita ser bien tratada para obtener el máximo beneficio de las técnicas de reducción de modelos. Métodos como la POD y la LATIN han sido inicialmente utilizados en esta problemática con diferentes grados de éxito. El método de TPWL, que combina la POD con múltiples aproximaciones lineales, ha resultado ser el mas adecuado para sistemas dinámicos oscilatorios. En el caso de las redes de transmisión eléctrica, se utiliza un modelo de parámetros distribuidos en el dominio de la frecuencia. Se propone reducir este modelo basándose en la PGD, donde los parámetros eléctricos de la red de transmisión son incluidos como coordenadas de la representación separada del modelo paramétrico. Este método es ampliado para representar la solución de modelos con parámetros dependientes de la frecuencia para las redes de transmisión eléctrica
Nouy, Anthony. "Contributions à la quantification et à la propagation des incertitudes en mécanique numérique." Habilitation à diriger des recherches, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00422364.
Full textReposant sur des bases mathématiques fortes, les méthodes spectrales de type Galerkin semblent constituer une voie prometteuse pour l'obtention de prédictions numériques fiables de la réponse de modèles régis par des équations aux dérivées partielles stochastiques (EDPS). Plusieurs inconvénients freinent cependant l'utilisation de ces techniques et leur transfert vers des applications de grande taille : le temps de calcul, les capacités de stockage mémoire requises et le caractère ``intrusif'', nécessitant une bonne connaissance des équations régissant le modèle et l'élaboration de solveurs spécifiques à une classe de problèmes donnée. Un premier volet de mes travaux de recherche a consisté à proposer une stratégie de résolution alternative tentant de lever ces inconvénients. L'approche proposée, baptisée méthode de décomposition spectrale généralisée, s'apparente à une technique de réduction de modèle a priori. Elle consiste à rechercher une décomposition spectrale optimale de la solution sur une base réduite de fonctions, sans connaître la solution a priori.
Un deuxième volet de mes activités a porté sur le développement d'une méthode de résolution d'EDPS pour le cas où l'aléa porte sur la géométrie. Dans le cadre des approches spectrales stochastiques, le traitement d'aléa sur l'opérateur et le second membre est en effet un aspect aujourd'hui bien maîtrisé. Par contre, le traitement de géométrie aléatoire reste un point encore très peu abordé mais qui peut susciter un intérêt majeur dans de nombreuses applications. Mes travaux ont consisté à proposer une extension de la méthode éléments finis étendus (X-FEM) au cadre stochastique. L'avantage principal de cette approche est qu'elle permet de traiter le cas de géométries aléatoires complexes, tout en évitant les problèmes liés au maillage et à la construction d'espaces d'approximation conformes.
Ces deux premiers volets ne concernent que l'étape de prédiction numérique, ou de propagation des incertitudes. Mes activités de recherche apportent également quelques contributions à l'étape amont de quantification des incertitudes à partir de mesures ou d'observations. Elles s'insèrent dans le cadre de récentes techniques de représentation fonctionnelle des incertitudes. Mes contributions ont notamment porté sur le développement d'algorithmes efficaces pour le calcul de ces représentations. En particulier, ces travaux ont permis la mise au point d'une méthode d'identification de géométrie aléatoire à partir d'images, fournissant une description des aléas géométriques adaptée à la simulation numérique. Une autre contribution porte sur l'identification de lois multi-modales par une technique de représentation fonctionnelle adaptée.
Sorba, Grégoire. "Etude expérimentale et modélisation numérique des écoulements de compression dans les composites stratifiés visqueux à plis discontinus." Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0038.
Full textThe design freedom of composites can be improved by combining continuous and discontinuous prepregs. The forming of a pre-heated blank made of optimally oriented and distributed discontinuous prepreg plies may lead to unacceptable defects such as in-plane and out-of-plane wrinkles, sliding of plies, rotation of adjacent plies, bending of fibres induced by transverse squeeze flow and finally to inappropriate and inefficient fibre distribution. This arises because the individual discontinuous plies are free to move and deform in the mould during the forming step. First, this work presents some experiments conducted to identify the behaviour of a stack of unidirectional and woven discontinuous viscous prepregs subjected to through-thickness compression. Then a model based on a heterogeneous transverse isotropic fluid approach is gradually developped in agreement with the experimental findings. It is shown that the various observed phenomena are retrieved for the unidirectional and partly for the woven prepreg by the numerical model. The predicted values are in good agreement with measurements, when the problem is solved in 3D with a relatively fine mesh in the thickness. Finally an attempt is made to reduce the computational cost by the use of advanced numerical simulation techniques