Academic literature on the topic 'Decoupled lateral and longitudinal control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decoupled lateral and longitudinal control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Decoupled lateral and longitudinal control"

1

Al Shibli, Murad. "UAV autonomous decoupled dynamic longitudinal-lateral motion control using full-order state observer." International Journal of Unmanned Systems Engineering 2, no. 4 (2014): 1–15. http://dx.doi.org/10.14323/ijuseng.2014.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Fang, Dengfeng Zhao, Yudong Zhong, et al. "Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC." Machines 13, no. 8 (2025): 650. https://doi.org/10.3390/machines13080650.

Full text
Abstract:
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral direct
APA, Harvard, Vancouver, ISO, and other styles
3

DeSantis, R. M. "Modeling and path-tracking control of a mobile wheeled robot with a differential drive." Robotica 13, no. 4 (1995): 401–10. http://dx.doi.org/10.1017/s026357470001883x.

Full text
Abstract:
SummaryTopics relevant to modeling and control of mobile wheeled robots with a differential drive are discussed by assuming a motion that is planar and free from lateral and longitudinal slippages, and by taking into account dynamic and kinematic properties of the vehicle. Based on the concept of geometric path-tracking, a controller is designed that is a memoryless function of the lateral, heading, and velocity path-tracking offsets. If these offsets are kept small and the assigned tracking velocity is constant, then this controller may be given a linear, time-invariant and decoupled PID (Pro
APA, Harvard, Vancouver, ISO, and other styles
4

Wolniakowski, Adam, and Arkadiusz Mystkowski. "Application of Unfalsified Control Theory in Controlling MAV." Solid State Phenomena 198 (March 2013): 171–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.171.

Full text
Abstract:
Controlling the flight of Micro Aerial Vehicles (MAV) is a highly challenging task, mostly due to nonlinearity of their models and highly varying longitudinal and lateral derivatives coefficients [. As such, it requires a proper form of robust control. The demand for such control is very high, as it is required in many applications. The following paper presents the application of Unfalsified Control Theory developed by Michael G. Safonov [1, 2, 6, . This interesting approach is based on the adaptive switching control, and does not require any previous knowledge of the controlled plant. The con
APA, Harvard, Vancouver, ISO, and other styles
5

Mystkowski, Arkadiusz. "Robust Optimal Control of MAV Based on Linear-Time Varying Decoupled Model Dynamics." Solid State Phenomena 198 (March 2013): 571–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.571.

Full text
Abstract:
This paper discusses a nonlinear robust control design procedure to micro air vehicle that uses the singular value (μ) and μ-synthesis technique. The optimal robust control law that combines a linear parameters varying (LPV) of UAV (unmanned aerial vehicle) are realized by using serial connection of the Kestrel autopilot and the Gumstix microprocessor. Thus, the robust control feedback loops, which handle the uncertainty of aerodynamics derivatives, are used to ensure robustness stability of the UAV local dynamics in longitudinal and lateral control directions.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, HaiDong, ZiHan Li, and ZhenLi Si. "Trajectory tracking control for four-wheel independent drive intelligent vehicle based on model predictive control and sliding mode control." Advances in Mechanical Engineering 13, no. 9 (2021): 168781402110451. http://dx.doi.org/10.1177/16878140211045142.

Full text
Abstract:
For four-wheel independent drive intelligent vehicle, the longitudinal and lateral motion control of the vehicle is decoupled and a hierarchical controller is designed: the upper layer is the motion controller, and the lower layer is the control distributor. In the motion controller, the model predictive control (MPC) is used to calculate the steering wheel angle and the total yaw moment for lateral control, and the sliding mode control (SMC) is used to calculate the total driving force for longitudinal control. In order to improve the control algorithm adaptability and the tracking accuracy a
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Jinsoo, Jahng-Hyon Park, and Kyung-Young Jhang. "Decoupled Longitudinal and Lateral Vehicle Control Based Autonomous Lane Change System Adaptable to Driving Surroundings." IEEE Access 9 (2021): 4315–34. http://dx.doi.org/10.1109/access.2020.3047189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deng, Zhao, Fuqiang Bing, Zhiming Guo, and Liaoni Wu. "Rope-Hook Recovery Controller Designed for a Flying-Wing UAV." Aerospace 8, no. 12 (2021): 384. http://dx.doi.org/10.3390/aerospace8120384.

Full text
Abstract:
Due to the complexity of landing environments, precision guidance and high-precision control technology have become key to the rope-hook recovery of shipborne unmanned aerial vehicles (UAVs). The recovery process was divided into three stages and a reasonable guidance strategy had been designed for them, respectively. This study separated the guidance and control issues into an outer guidance loop and an inner control loop. The inner loop (attitude control loop) controled the UAV to follow the acceleration commands generated by the outer loop (trajectory tracking loop). The inner loop of the l
APA, Harvard, Vancouver, ISO, and other styles
9

Zeng, Di, Ling Zheng, Yinong Li, Jie Zeng, and Kan Wang. "A Personalized Motion Planning Method with Driver Characteristics in Longitudinal and Lateral Directions." Electronics 12, no. 24 (2023): 5021. http://dx.doi.org/10.3390/electronics12245021.

Full text
Abstract:
Humanlike driving is significant in improving the safety and comfort of automated vehicles. This paper proposes a personalized motion planning method with driver characteristics in longitudinal and lateral directions for highway automated driving. The motion planning is decoupled into path optimization and speed optimization under the framework of the Baidu Apollo EM motion planner. For modeling driver behavior in the longitudinal direction, a car-following model is developed and integrated into the speed optimizer based on a weight ratio hypothesis model of the objective functional, whose par
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Yuxuan, Yaoheng Li, Shuai He, and Xuzhao Hou. "Cascaded MPC-ADRC trajectory tracking control for electric-drive unmanned tracked vehicles." Journal of Physics: Conference Series 3019, no. 1 (2025): 012065. https://doi.org/10.1088/1742-6596/3019/1/012065.

Full text
Abstract:
Abstract Heavy-duty unmanned tracked vehicles are characterized by large inertia and complex operating conditions, which may lead to vehicle instability and trajectory divergence during trajectory tracking control. To address the trajectory tracking problem of heavy-duty unmanned vehicles, a series control method combining Model Predictive Control (MPC) and Active Disturbance Rejection Control (ADRC) is proposed. In this framework, the MPC algorithm based on a small-angle assumption calculates the desired yaw rate by solving local path points. The first-order linear ADRC controller then drives
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Decoupled lateral and longitudinal control"

1

Legrand, Romain. "Suivi de trajectoire autonome et robuste en milieu agricole." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2022. http://www.theses.fr/2022IMTA0330.

Full text
Abstract:
L’automatisation des véhicules agricoles est aujourd’hui un enjeu majeur de la mutation des pratiques agricoles. Munis des capteurs ad hoc, il est question ici de leur capacité à suivre une trajectoire prédéfinie, de manière robuste afin d’assurer leur mission en dépit d’un sol complexe. Cette thèse contribue au sujet en revisitant les problématiques de contrôle des dynamiques latérales et longitudinales. Dans le but de générer une commande robuste des angles de braquage, le suivi latéral du chemin de référence proposé s’appuie sur une approche multi-objectif H2/H∞ et multi-modèle, de manière
APA, Harvard, Vancouver, ISO, and other styles
2

Agostinho, Solander Patrício Lopes. "Controle longitudinal e lateral para veículos terrestres de categoria pesada." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-16122015-082915/.

Full text
Abstract:
Este projeto apresenta o desenvolvimento de um controle longitudinal e lateral para um veículo terrestre de categoria pesada, usando o conceito de geração de curvas de Clothoids. O controle é em malha fechada, com realimentação de velocidade e posição global (X,Y) do veículo no plano bi-dimensional. Dentro de uma arquitetura de controle autônomo para um veículo, o controle longitudinal ajusta a velocidade de cruzeiro em função da trajetória e o lateral é responsável por regular a direção do volante e a sua correspondência para com os pneus, que por sua vez direcionam o veículo dentro da trajet
APA, Harvard, Vancouver, ISO, and other styles
3

Olsson, Christian. "Model Complexity and Coupling of Longitudinal and Lateral Control in Autonomous Vehicles Using Model Predictive Control." Thesis, KTH, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175389.

Full text
Abstract:
Autonomous vehicles and research pertaining to them have been an important topicin academia and industry in recent years. Developing controllers that enable vehiclesto performpath and trajectory following is a diverse topic where many differentcontrol strategies are available. In this thesis, we focus on lateral and longitudinalcontrol of autonomous vehicles and two different control strategies are considered:a standard decoupled control and a new suggested coupled control.In the decoupled control, the lateral controller consists of a linear time-varying modelpredictive controller (LTV-MPC) to
APA, Harvard, Vancouver, ISO, and other styles
4

Schnelle, Scott C. "Development of Personalized Lateral and Longitudinal Driver Behavior Models for Optimal Human-Vehicle Interactive Control." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480362246357462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alvarez, Juan Camilo. "Estimation of the Longitudinal and Lateral Velocities of a Vehicle using Extended Kalman Filters." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13951.

Full text
Abstract:
Vehicle motion and tire forces have been estimated using extended Kalman filters for many years. The use of extended Kalman filters is primarily motivated by the simultaneous presence of nonlinear dynamics and sensor noise. Two versions of extended Kalman filters are employed in this thesis: one using a deterministic tire-force model and the other using a stochastic tire-force model. Previous literature has focused on linear stochastic tire-force models and on linear deterministic tire-force models. However, it is well known that there exists a nonlinear relationship between slip variables and
APA, Harvard, Vancouver, ISO, and other styles
6

Rojek, Fredric W. "Development of a mathematical model that simulates the longitudinal, and lateral-directional response of the F/A-18 for the study of flight control reconfiguration." Thesis, Monterey, California: U.S. Naval Postgraduate School, 1986. http://hdl.handle.net/10945/21787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Polack, Philip. "Cohérence et stabilité des systèmes hiérarchiques de planification et de contrôle pour la conduite automatisée." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM025/document.

Full text
Abstract:
La voiture autonome pourrait réduire le nombre de morts et de blessés sur les routes tout en améliorant l'efficacité du trafic. Cependant, afin d'assurer leur déploiement en masse sur les routes ouvertes au public, leur sécurité doit être garantie en toutes circonstances. Cette thèse traite de l'architecture de planification et de contrôle pour la conduite automatisée et défend l'idée que l'intention du véhicule doit correspondre aux actions réalisées afin de garantir la sécurité à tout moment. Pour cela, la faisabilité cinématique et dynamique de la trajectoire de référence doit être assurée.
APA, Harvard, Vancouver, ISO, and other styles
8

Guillet, Audrey. "Commande locale décentralisée de robots mobiles en formation en milieu naturel." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22609/document.

Full text
Abstract:
La problématique étudiée dans cette thèse concerne le guidage en formation d’une flotte de robots mobiles en environnement naturel. L’objectif poursuivi par les robots est de suivre une trajectoire connue (totalement ou partiellement) en se coordonnant avec les autres robots pour maintenir une formation décrite comme un ensemble de distances désirées entre les véhicules. Le contexte d’évolution en environnement naturel doit être pris en compte par les effets qu’il induit sur le déplacement des robots. En effet, les conditions d’adhérence sont variables et créent des glissements significatifs d
APA, Harvard, Vancouver, ISO, and other styles
9

Penco, Dario. "Contrôle véhicule autonome. Contrôle robuste et haute performance pour permettre les manœuvres à haute dynamique des véhicules autonomes." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG039.

Full text
Abstract:
Le travail abordé dans ces travaux de thèse se place dans le contexte de la conduite autonome. Plus particulièrement, l'objectif est le développement d'une loi de commande pour le suivi de trajectoire d'un véhicule autonome pour des manœuvres d'évitement d'obstacles à haute dynamique.Plusieurs modèles non-linéaires de dynamique du véhicule, capables de représenter son comportement dans des manœuvres à haute dynamique, sont proposés. Le but de la modélisation est d'obtenir un modèle pour la synthèse des correcteurs. L'ensemble de modèles proposés considère les dynamiques des vitesses longitudin
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Jin. "Contribution à la commande d'un train de véhicules intelligents." Phd thesis, Ecole Centrale de Lille, 2010. http://tel.archives-ouvertes.fr/tel-00586081.

Full text
Abstract:
Ce mémoire est consacré à la mise en œuvre de commandes d'un train de véhicules intelligents sur autoroute ayant pour objectifs principaux de réduire la congestion et d'améliorer la sécurité routière. Après avoir présenté l'état de l'art sur des systèmes de conduite automatisée, des modèles de la dynamique longitudinale et latérale du véhicule sont présentés. Ensuite, des stratégies de contrôle longitudinal et latéral sont étudiées.D'abord, le contrôle longitudinal est conçu pour être hiérarchique avec un contrôleur de niveau supérieur et un contrôleur de niveau inférieur. Pour celui de niveau
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Decoupled lateral and longitudinal control"

1

Center, Langley Research, ed. Fuzzy logic decoupled lateral control for general aviation airplanes. National Aeronautics and Space Administration, Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Center, Langley Research, ed. Fuzzy logic decoupled longitudinal control for general aviation airplanes. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suit, William T. Lateral and longitudinal stability and control parameters for the space shuttle Discovery as determined from flight test data. National Aeronautics and Space Administration, Langley Research Center, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suit, William T. Lateral and longitudinal aerodynamic stability and control parameters of the basic vortex flap research aircraft as determined from flight test data. National Aeronautics and Space Administration, Langley Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reubush, David E. Effects of the installation and operation of jet-exhaust yaw vanes on the longitudinal and lateral-directional characteristics of the F-14 airplane. Langley Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

L, Berrier Bobby, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Effects of the installation and operation of jet-exhaust yaw vanes on the longitudinal and lateral-directional characteristics of the F-14 airplane. National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rojek, Fredric W. Development of a mathematical model that simulates the longitudinal, and lateral-directional response of the F/A-18 for the study of flight control reconfiguration. Naval Postgraduate School, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

George C. Marshall Space Flight Center., ed. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept. National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fuzzy logic decoupled lateral control for general aviation airplanes. National Aeronautics and Space Administration, Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

National Aeronautics and Space Administration (NASA) Staff. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Decoupled lateral and longitudinal control"

1

Sinha, Nandan K., and N. Ananthkrishnan. "Coupled Lateral–Longitudinal Flight Dynamics." In Advanced Flight Dynamics with Elements of Flight Control. CRC Press, 2017. http://dx.doi.org/10.1201/9781315151977-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofauer, Sonja, Britta Michel, Sigrun Weise, et al. "HMI Strategy – Lateral and Longitudinal Control." In UR:BAN Human Factors in Traffic. Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-15418-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vepa, Ranjan. "Longitudinal and Lateral Linear Stability and Control." In Flight Dynamics, Simulation, and Control, 2nd ed. CRC Press, 2023. http://dx.doi.org/10.1201/9781003266310-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Isermann, Rolf. "Advanced Driver Assistance Systems for Longitudinal and Lateral Guidance." In Automotive Control. Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-39440-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wielitzka, M., S. Eicke, A. Busch, M. Dagen, and T. Ortmaier. "Unscented Kalman filter for combined longitudinal and lateral vehicle dynamics." In Advanced Vehicle Control AVEC’16. Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Romero, Francisco Badea, Claudio Gragnaniello, Raffaele Marotta, and Daniele Pascarella. "Implementation of Lateral and Longitudinal Control in Nebrija Autonomous Vehicle." In Mechanisms and Machine Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64569-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Suárez, J. I., B. M. Vinagre, A. J. Calderón, C. A. Monje, and Y. Q. Chen. "Using Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles." In Computer Aided Systems Theory - EUROCAST 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45210-2_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Tengfei, Chenwei Yao, Mohan Long, Mingqin Gu, and Zhiyuan Liu. "Overview of Longitudinal and Lateral Control for Intelligent Vehicle Path Tracking." In Lecture Notes in Electrical Engineering. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9050-1_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Haoyu, Chang Liu, Yingxi Piao, Sen Yang, Beiyan Jiang, and Shengbo Eben Li. "Design of Explicit and Lateral-Longitudinal Integrated Motion Controller with Safety Guarantee for Autonomous Vehicles." In Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_133.

Full text
Abstract:
AbstractModel predictive control (MPC) is an effective method in lateral-longitudinal integrated control with safety guarantee for autonomous vehicles. But its computational burden is significant, making it challenging to meet real-time requirements. The contribution of this paper is to propose an explicitly solvable autonomous vehicle motion controller with lateral-longitudinal integrated characteristics and safety guarantee, achieved by integrating input-output controllers from exponential control Lyapunov function (ECLF) and exponential control barrier function (ECBF). We performed simulati
APA, Harvard, Vancouver, ISO, and other styles
10

Kageyama, Ichiro, Yukiyo Kuriyagawa, and Yiyun Wang. "Fundamental study on driver model for lateral and longitudinal control to advanced driver assistance systems." In Advanced Vehicle Control AVEC’16. Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-52.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Decoupled lateral and longitudinal control"

1

Zhang, Bowen. "Intelligent Vehicle Lateral and Longitudinal Decoupled Dynamic Modeling and Control System Simulation Based on GRU-FNN." In 2024 3rd International Conference on Energy and Power Engineering, Control Engineering (EPECE). IEEE, 2024. http://dx.doi.org/10.1109/epece63428.2024.00034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coleman, David, and Moble Benedict. "System Identification of a Hover-Capable Robotic Hummingbird." In Vertical Flight Society 72nd Annual Forum & Technology Display. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11359.

Full text
Abstract:
This paper presents the first ever linear system identification of the flight dynamics of a hover-capable robotic hummingbird which utilizes only two wings for flying as well as for all its control and stabilization. The vehicle was developed in-house, using state-of-the-art materials, electronics, and innovative design/fabrication techniques, and a description of its development is provided. Systematic experimental studies were conducted to develop flexible, aeroelastically tailored wings, along with novel wing kinematic modulation mechanisms for controlling roll, pitch and yaw. Additionally,
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Ziwei, Jian Li, Shuyi Liu, Kexin Hao, Haoran Shen, and Dongqing Yang. "Decoupled Lateral and Longitudinal Local Path Planning Method Based on LiDAR." In 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2024. https://doi.org/10.1109/icsidp62679.2024.10868792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shao, Keyong, Jin Li, Hongyan Qian, Chenjun Sun, and Yang Liu. "Coordinated Longitudinal and Lateral Control for Vehicle Trajectory Tracking using Model Predictive Control." In 2024 43rd Chinese Control Conference (CCC). IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10661412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Zhicheng. "Coupled Lateral and Longitudinal Control Systems with Planning for Autonomous Vehicles." In 2024 5th International Conference on Artificial Intelligence and Computer Engineering (ICAICE). IEEE, 2024. https://doi.org/10.1109/icaice63571.2024.10864261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Bocheng, Yang Zhu, and Hongye Su. "Coupled Lateral and Longitudinal Control for Vehicle Platoons on Curved Roads." In 11th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013131500003941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Qian, and Ge Guo. "Lateral-Longitudinal Prescribed-Time Cooperative Control of Vehicles Subject to Wear and Road Disturbance." In 2024 43rd Chinese Control Conference (CCC). IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shao, Keyong, Feiyu Pan, Na Yi, and Yang Han. "Combined Lateral-Longitudinal Vehicle Trajectory Tracking Control Based on Model Predictive Control and Fractional-Order PID." In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN). IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Azar, Ahmad Taher, Fernando E. Serrano, Nashwa Ahmad Kamal, and Anis Koubaa. "Decoupled Lateral-Longitudinal Dynamic Modeling and Control of Unmanned Aerial Vehicles." In 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2021. http://dx.doi.org/10.1109/icarsc52212.2021.9429784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Menhour, Lghani, Brigitte d'Andrea-novel, Michel Fliess, and Hugues Mounier. "Multivariable decoupled longitudinal and lateral vehicle control: A model-free design." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760313.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Decoupled lateral and longitudinal control"

1

Event-Triggered Adaptive Robust Control for Lateral Stability of Steer-by-Wire Vehicles with Abrupt Nonlinear Faults. SAE International, 2022. http://dx.doi.org/10.4271/2022-01-5056.

Full text
Abstract:
Because autonomous vehicles (AVs) equipped with active front steering have the features of time varying, uncertainties, high rate of fault, and high burden on the in-vehicle networks, this article studies the adaptive robust control problem for improving lateral stability in steer-by-wire (SBW) vehicles in the presence of abrupt nonlinear faults. First, an upper-level robust H∞ controller is designed to obtain the desired front-wheel steering angle for driving both the yaw rate and the sideslip angle to reach their correct values. Takagi-Sugeno (T-S) fuzzy modeling method, which has shown the
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!