Academic literature on the topic 'Dedekind cuts'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dedekind cuts.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dedekind cuts"

1

Dăneţ, Nicolae. "Dedekind cuts in C(X)." Banach Center Publications 95 (2011): 287–97. http://dx.doi.org/10.4064/bc95-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ehrlich, P. "Dedekind cuts of Archimedean complete ordered abelian groups." Algebra Universalis 37, no. 2 (1997): 223–34. http://dx.doi.org/10.1007/s000120050014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fornasiero, Antongiulio, and Marcello Mamino. "Arithmetic of Dedekind cuts of ordered Abelian groups." Annals of Pure and Applied Logic 156, no. 2-3 (2008): 210–44. http://dx.doi.org/10.1016/j.apal.2008.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trujillo, Timothy. "Ramsey for R1 ultrafilter mappings and their Dedekind cuts." Mathematical Logic Quarterly 61, no. 4-5 (2015): 263–73. http://dx.doi.org/10.1002/malq.201300078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tressl, Marcus. "Model completeness of o-minimal structures expanded by Dedekind cuts." Journal of Symbolic Logic 70, no. 1 (2005): 29–60. http://dx.doi.org/10.2178/jsl/1107298509.

Full text
Abstract:
§1. Introduction. Let M be a totally ordered set. A (Dedekind) cut p of M is a couple (pL, pR) of subsets pL, pR of M such that pL ⋃ pR = M and pL < pR, i.e., a < b for all a ∈ pL, b ∈ pR. In this article we are looking for model completeness results of o-minimal structures M expanded by a set pL for a cut p of M. This means the following. Let M be an o-minimal structure in the language L and suppose M is model complete. Let D be a new unary predicate and let p be a cut of (the underlying ordered set of) M. Then we are looking for a natural, definable expansion of the L(D)-structure (M,
APA, Harvard, Vancouver, ISO, and other styles
6

Tressl, Marcus. "The elementary theory of Dedekind cuts in polynomially bounded structures." Annals of Pure and Applied Logic 135, no. 1-3 (2005): 113–34. http://dx.doi.org/10.1016/j.apal.2004.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BAUER, ANDREJ, and PAUL TAYLOR. "The Dedekind reals in abstract Stone duality." Mathematical Structures in Computer Science 19, no. 4 (2009): 757–838. http://dx.doi.org/10.1017/s0960129509007695.

Full text
Abstract:
Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos.ASD reconciles mathematical and computational viewpoints, providing an inherently computable calculus that does not sacrifice key properties of real analysis such as compactness of the closed interval. Previous theories of recursive analysis failed to do this because they were based on points; ASD succeeds because, like locale theory and formal topology, it is founded on the alg
APA, Harvard, Vancouver, ISO, and other styles
8

Crosilla, Laura, Hajime Ishihara, and Peter Schuster. "On constructing completions." Journal of Symbolic Logic 70, no. 3 (2005): 969–78. http://dx.doi.org/10.2178/jsl/1122038923.

Full text
Abstract:
AbstractThe Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo–Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two–element coverings is used.In particular, the Dedekind reals form a set: whence we have also refined an earlier result by Aczel and Rathjen, who invoked the full form of fullness. To further generalise this, we look at Rich
APA, Harvard, Vancouver, ISO, and other styles
9

Chernikov, Artem, and Saharon Shelah. "ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES." Journal of the Institute of Mathematics of Jussieu 15, no. 4 (2015): 771–84. http://dx.doi.org/10.1017/s1474748015000018.

Full text
Abstract:
For an infinite cardinal ${\it\kappa}$, let $\text{ded}\,{\it\kappa}$ denote the supremum of the number of Dedekind cuts in linear orders of size ${\it\kappa}$. It is known that ${\it\kappa}<\text{ded}\,{\it\kappa}\leqslant 2^{{\it\kappa}}$ for all ${\it\kappa}$ and that $\text{ded}\,{\it\kappa}<2^{{\it\kappa}}$ is consistent for any ${\it\kappa}$ of uncountable cofinality. We prove however that $2^{{\it\kappa}}\leqslant \text{ded}(\text{ded}(\text{ded}(\text{ded}\,{\it\kappa})))$ always holds. Using this result we calculate the Hanf numbers for the existence of two-cardinal models with
APA, Harvard, Vancouver, ISO, and other styles
10

Höhle, Ulrich. "Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic." Fuzzy Sets and Systems 24, no. 3 (1987): 263–78. http://dx.doi.org/10.1016/0165-0114(87)90027-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dedekind cuts"

1

Pimentel, Thiago Trindade. "Construção dos números reais via cortes de Dedekind." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-18102018-164352/.

Full text
Abstract:
O objetivo desta dissertação é apresentar a construção dos números reais a partir de cortes de Dedekind. Para isso, vamos estudar os números naturais, os números inteiros, os números racionais e as propriedades envolvidas. Então, a partir dos números racionais, iremos construir o corpo dos números reais e estabelecer suas propriedades. Um corte de Dedekind, assim nomeado em homenagem ao matemático alemão Richard Dedekind, é uma partição dos números racionais em dois conjuntos não vazios A e B em que cada elemento de A é menor do que todos os elementos de B e A não contém um elemento máximo. Se
APA, Harvard, Vancouver, ISO, and other styles
2

Ribeiro, Fernando AraÃjo. "ConstruÃÃes dos nÃmeros reais voltadas para os professores da rede bÃsica de ensino." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14671.

Full text
Abstract:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior<br>Este trabalho tem como objetivo mostrar que o conjunto dos nÃmeros reais à um corpo ordenado completo e que, a menos de um isomorfismo, à Ãnico. Este trabalho à voltado para todos aqueles que tenham interesse em MatemÃtica, sobretudo, para os professores de MatemÃtica do ensino mÃdio que utilizam as propriedades do conjunto dos nÃmeros reais sem conhecer a teoria matemÃtica envolvida. Para tanto, à necessÃrio caracterizar o conjunto dos reais a fim de provar suas propriedades. Aqui, utilizamos duas construÃÃes, a saber: os reais via
APA, Harvard, Vancouver, ISO, and other styles
3

Silva, José Elias da. "A construção dos números reais e aplicações." Universidade Estadual da Paraíba, 2016. http://tede.bc.uepb.edu.br/jspui/handle/tede/2850.

Full text
Abstract:
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2017-09-12T12:42:53Z No. of bitstreams: 1 PDF - José Elias da Silva.pdf: 9535482 bytes, checksum: 4f018a51c1e15736072db257c4b86319 (MD5)<br>Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2017-10-26T16:05:13Z (GMT) No. of bitstreams: 1 PDF - José Elias da Silva.pdf: 9535482 bytes, checksum: 4f018a51c1e15736072db257c4b86319 (MD5)<br>Made available in DSpace on 2017-10-26T16:05:13Z (GMT). No. of bitstreams: 1 PDF - José Elias da Silva.pdf: 9535482 bytes, checksum: 4f018a51c1e15736072db257c4b86319 (MD5) Previous i
APA, Harvard, Vancouver, ISO, and other styles
4

Duarte, Carlos Eduardo de Lima. "Conjuntos num?ricos." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17017.

Full text
Abstract:
Made available in DSpace on 2014-12-17T15:27:44Z (GMT). No. of bitstreams: 1 CarlosELD_DISSERT.pdf: 699872 bytes, checksum: f940eba1822577b96cbd189eefe2a0d9 (MD5) Previous issue date: 2013-03-15<br>Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior<br>In this work, we present a text on the Sets Numerical using the human social needs as a tool for construction new numbers. This material is intended to present a text that reconciles the correct teaching of mathmatics and clarity needed for a good learning<br>Neste trabalho, elaboramos um texto sobre os Conjuntos Num?ricos, utilizando
APA, Harvard, Vancouver, ISO, and other styles
5

Queiroz, Fabiana Moura de. "Um estudo sobre construções dos Números Reais." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4555.

Full text
Abstract:
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-05-19T18:16:57Z No. of bitstreams: 2 Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)<br>Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-05-19T18:18:56Z (GMT) No. of bitstreams: 2 Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b863
APA, Harvard, Vancouver, ISO, and other styles
6

Pontes, Kerly Monroe. "Existência e Unicidade dos Números Reais via Cortes de Dedekind." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7505.

Full text
Abstract:
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-05-27T12:50:34Z No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5)<br>Approved for entry into archive by Leonardo Americo (leonardo@sti.ufpb.br) on 2015-05-27T12:52:35Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5)<br>Made available in DSpace on 2015-05-27T12:52:35Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5) Previous issue date: 2014-08-29<
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dedekind cuts"

1

Georgiev, Ivan. "Dedekind Cuts and Long Strings of Zeros in Base Expansions." In Lecture Notes in Computer Science. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80049-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clawson, Calvin C. "Dedekind’s Cut." In The Mathematical Traveler. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-6014-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Appendix. MacNeille Order Completion Through Dedekind Cuts and Related Results." In Solution of Continuous Nonlinear PDEs Through Order Completion. Elsevier, 1994. http://dx.doi.org/10.1016/s0304-0208(08)71809-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!