Academic literature on the topic 'Deep generative modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep generative modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep generative modeling"
Blaschke, Thomas, and Jürgen Bajorath. "Compound dataset and custom code for deep generative multi-target compound design." Future Science OA 7, no. 6 (2021): FSO715. http://dx.doi.org/10.2144/fsoa-2021-0033.
Full textJoshi, Ameya, Minsu Cho, Viraj Shah, et al. "InvNet: Encoding Geometric and Statistical Invariances in Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4377–84. http://dx.doi.org/10.1609/aaai.v34i04.5863.
Full textLai, Peter, and Feruza Amirkulova. "Acoustic metamaterial design using Conditional Wasserstein Generative Adversarial Networks." Journal of the Acoustical Society of America 151, no. 4 (2022): A253. http://dx.doi.org/10.1121/10.0011234.
Full textKomanduri, Aneesh. "Toward Causal Generative Modeling: From Representation to Generation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29275–76. https://doi.org/10.1609/aaai.v39i28.35215.
Full textStrokach, Alexey, and Philip M. Kim. "Deep generative modeling for protein design." Current Opinion in Structural Biology 72 (February 2022): 226–36. http://dx.doi.org/10.1016/j.sbi.2021.11.008.
Full textTomczak, Jakub M. "Deep Generative Modeling: From Probabilistic Framework to Generative AI." Entropy 27, no. 3 (2025): 238. https://doi.org/10.3390/e27030238.
Full textLopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. "Deep generative modeling for single-cell transcriptomics." Nature Methods 15, no. 12 (2018): 1053–58. http://dx.doi.org/10.1038/s41592-018-0229-2.
Full textLee, Ung-Gi, Sang-Hee Kang, Jong-Chan Lee, Seo-Yeon Choi, Ukmyung Choi, and Cheol-Il Lim. "Development of Deep Learning-based Art Learning Support Tool: Using Generative Modeling." Korean Association for Educational Information and Media 26, no. 1 (2020): 207–36. http://dx.doi.org/10.15833/kafeiam.26.1.207.
Full textBehnia, Farnaz, Dominik Karbowski, and Vadim Sokolov. "Deep generative models for vehicle speed trajectories." Applied Stochastic Models in Business and Industry 39, no. 5 (2023): 701–19. http://dx.doi.org/10.1002/asmb.2816.
Full textJanson, Giacomo, and Michael Feig. "Transferable deep generative modeling of intrinsically disordered protein conformations." PLOS Computational Biology 20, no. 5 (2024): e1012144. http://dx.doi.org/10.1371/journal.pcbi.1012144.
Full textDissertations / Theses on the topic "Deep generative modeling"
Skalic, Miha 1990. "Deep learning for drug design : modeling molecular shapes." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/667503.
Full textChen, Tian Qi. "Deep kernel mean embeddings for generative modeling and feedforward style transfer." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62668.
Full textBrodie, Michael B. "Methods for Generative Adversarial Output Enhancement." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8763.
Full textTestolin, Alberto. "Modeling cognition with generative neural networks: The case of orthographic processing." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424619.
Full textYan, Guowei. "Interactive Modeling of Elastic Materials and Splashing Liquids." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1593098802306904.
Full textSadok, Samir. "Audiovisual speech representation learning applied to emotion recognition." Electronic Thesis or Diss., CentraleSupélec, 2024. http://www.theses.fr/2024CSUP0003.
Full textLuc, Pauline. "Apprentissage autosupervisé de modèles prédictifs de segmentation à partir de vidéos." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM024/document.
Full textIonascu, Beatrice. "Modelling user interaction at scale with deep generative methods." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239333.
Full textMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Full textFang, Zhufeng. "USING GEOSTATISTICS, PEDOTRANSFER FUNCTIONS TO GENERATE 3D SOIL AND HYDRAULIC PROPERTY DISTRIBUTIONS FOR DEEP VADOSE ZONE FLOW SIMULATIONS." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193439.
Full textBooks on the topic "Deep generative modeling"
Tomczak, Jakub M. Deep Generative Modeling. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93158-2.
Full textTomczak, Jakub M. Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2.
Full textGanem, Gabriel Loaiza. Advances in Deep Generative Modeling With Applications to Image Generation and Neuroscience. [publisher not identified], 2019.
Find full textYahi, Alexandre. Simulating drug responses in laboratory test time series with deep generative modeling. [publisher not identified], 2019.
Find full textTomczak, Jakub. Deep Generative Modeling. Springer International Publishing AG, 2022.
Find full textHartnett, Gavin, Raffaele Vardavas, Lawrence Baker, et al. Deep Generative Modeling in Network Science with Applications to Public Policy Research. RAND Corporation, 2020. http://dx.doi.org/10.7249/wra843-1.
Full textBongard, Josh. Modeling self and others. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0011.
Full textBook chapters on the topic "Deep generative modeling"
Tomczak, Jakub M. "Hybrid Modeling." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_5.
Full textTomczak, Jakub M. "Hybrid Modeling." In Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_6.
Full textTomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_7.
Full textTomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_8.
Full textTomczak, Jakub M. "Deep Generative Modeling for Neural Compression." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_8.
Full textTomczak, Jakub M. "Autoregressive Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_2.
Full textTomczak, Jakub M. "Energy-Based Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_6.
Full textTomczak, Jakub M. "Flow-Based Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_3.
Full textTomczak, Jakub M. "Why Deep Generative Modeling?" In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_1.
Full textTomczak, Jakub M. "Latent Variable Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_4.
Full textConference papers on the topic "Deep generative modeling"
Chelaru, Bogdan, and Catalin Onutu. "BIM APLICATIONS IN THE DESIGN OF DEEP FOUNDATIONS FOR WIND TURBINES." In SGEM International Multidisciplinary Scientific GeoConference 24. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/6.1/s27.50.
Full textRizia, Mst Mousumi, Chenchen Xu, Jennie Roberts, et al. "Understanding the Development of Disease in Radiology Scans of the Brain through Deep Generative Modelling." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822442.
Full textCaccia, Lucas, Herke van Hoof, Aaron Courville, and Joelle Pineau. "Deep Generative Modeling of LiDAR Data." In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8968535.
Full textDavoody, Amirhossein, Ananda S. Roy, and Sivakumar P. Mudanai. "Deep Generative Model for Device Variation Modeling." In 2023 International Electron Devices Meeting (IEDM). IEEE, 2023. http://dx.doi.org/10.1109/iedm45741.2023.10413830.
Full textBianco, Michael J., Sharon Gannot, and Peter Gerstoft. "Semi-Supervised Source Localization with Deep Generative Modeling." In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020. http://dx.doi.org/10.1109/mlsp49062.2020.9231825.
Full textLi, Zhaoyu, Son P. Nguyen, Dong Xu, and Yi Shang. "Protein Loop Modeling Using Deep Generative Adversarial Network." In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2017. http://dx.doi.org/10.1109/ictai.2017.00166.
Full textFatir Ansari, Abdul, Jonathan Scarlett, and Harold Soh. "A Characteristic Function Approach to Deep Implicit Generative Modeling." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.00750.
Full textLiu, Yiding, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. "Online Anomalous Trajectory Detection with Deep Generative Sequence Modeling." In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020. http://dx.doi.org/10.1109/icde48307.2020.00087.
Full textGhimire, Sandesh, and Linwei Wang. "Deep Generative Modeling and Analysis of Cardiac Transmembrane Potential." In 2018 Computing in Cardiology Conference. Computing in Cardiology, 2018. http://dx.doi.org/10.22489/cinc.2018.075.
Full textDai, Mengyu, and Haibin Hang. "Manifold Matching via Deep Metric Learning for Generative Modeling." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00652.
Full textReports on the topic "Deep generative modeling"
Sadoune, Igor, Marcelin Joanis, and Andrea Lodi. Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data. CIRANO, 2023. http://dx.doi.org/10.54932/lqog8430.
Full textHuang, Lei, Meng Song, Hui Shen, et al. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/48221.
Full textSkyllingstad, Eric D. Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada498290.
Full textSkyllingstad, Eric D. Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada534062.
Full textBeaulieu, Stace E., Karen Stocks, and Leslie M. Smith. FAIR Data Training for Deep Ocean Early Career Researchers: Syllabus and slide presentations. Woods Hole Oceanographic Institution, 2024. http://dx.doi.org/10.1575/1912/67631.
Full textBuesseler, Buessele, Daniele Bianchi, Fei Chai, et al. Paths forward for exploring ocean iron fertilization. Woods Hole Oceanographic Institution, 2023. http://dx.doi.org/10.1575/1912/67120.
Full text