Journal articles on the topic 'Deep-Latent Variable Models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep-Latent Variable Models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cheng, Debo, Ziqi Xu, Jiuyong Li, Lin Liu, Jixue Liu, and Thuc Duy Le. "Causal Inference with Conditional Instruments Using Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 7122–30. http://dx.doi.org/10.1609/aaai.v37i6.25869.
Full textPiriyakulkij, Wasu Top, Yingheng Wang, and Volodymyr Kuleshov. "Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 19921–30. https://doi.org/10.1609/aaai.v39i19.34194.
Full textMartínez-Palomera, Jorge, Joshua S. Bloom, and Ellianna S. Abrahams. "Deep Generative Modeling of Periodic Variable Stars Using Physical Parameters." Astronomical Journal 164, no. 6 (2022): 263. http://dx.doi.org/10.3847/1538-3881/ac9b3f.
Full textNalisnick, Eric, Padhraic Smyth, and Dustin Tran. "A Brief Tour of Deep Learning from a Statistical Perspective." Annual Review of Statistics and Its Application 10, no. 1 (2023): 219–46. http://dx.doi.org/10.1146/annurev-statistics-032921-013738.
Full textWöber, Wilfried, Papius Tibihika, Cristina Olaverri-Monreal, Lars Mehnen, Peter Sykacek, and Harald Meimberg. "Comparison of Unsupervised Learning Methods for Natural Image Processing." Biodiversity Information Science and Standards 3 (July 4, 2019): e37886. https://doi.org/10.3897/biss.3.37886.
Full textYang, Zeyu, and Zhiqiang Ge. "Monitoring and prediction of big process data with deep latent variable models and parallel computing." Journal of Process Control 92 (August 2020): 19–34. http://dx.doi.org/10.1016/j.jprocont.2020.05.010.
Full textShen, Bingbing, Le Yao, and Zhiqiang Ge. "Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure." Control Engineering Practice 94 (January 2020): 104198. http://dx.doi.org/10.1016/j.conengprac.2019.104198.
Full textWöber, Wilfried, Lars Mehnen, Manuel Curto, Papius Dias Tibihika, Genanaw Tesfaye, and Harald Meimberg. "Investigating Shape Variation Using Generalized Procrustes Analysis and Machine Learning." Applied Sciences 12, no. 6 (2022): 3158. http://dx.doi.org/10.3390/app12063158.
Full textTrieu, Hai-Long, Makoto Miwa, and Sophia Ananiadou. "BioVAE: a pre-trained latent variable language model for biomedical text mining." Bioinformatics 38, no. 3 (2021): 872–74. http://dx.doi.org/10.1093/bioinformatics/btab702.
Full textCofre-Martel, Sergio, Enrique Lopez Droguett, and Mohammad Modarres. "Remaining Useful Life Estimation through Deep Learning Partial Differential Equation Models: A Framework for Degradation Dynamics Interpretation Using Latent Variables." Shock and Vibration 2021 (May 27, 2021): 1–15. http://dx.doi.org/10.1155/2021/9937846.
Full textKim, Ha Young, and Dongsup Kim. "Prediction of mutation effects using a deep temporal convolutional network." Bioinformatics 36, no. 7 (2019): 2047–52. http://dx.doi.org/10.1093/bioinformatics/btz873.
Full textToledo-Marín, J. Quetzalcóatl, and James A. Glazier. "Using deep LSD to build operators in GANs latent space with meaning in real space." PLOS ONE 18, no. 6 (2023): e0287736. http://dx.doi.org/10.1371/journal.pone.0287736.
Full textAlam, Fardina Fathmiul, and Amarda Shehu. "Data Size and Quality Matter: Generating Physically-Realistic Distance Maps of Protein Tertiary Structures." Biomolecules 12, no. 7 (2022): 908. http://dx.doi.org/10.3390/biom12070908.
Full textSun, Jiankai, Rui Liu, and Bolei Zhou. "HiABP: Hierarchical Initialized ABP for Unsupervised Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (2021): 9747–55. http://dx.doi.org/10.1609/aaai.v35i11.17172.
Full textWöber, Wilfried, Lars Mehnen, Peter Sykacek, and Harald Meimberg. "Investigating Explanatory Factors of Machine Learning Models for Plant Classification." Plants 10, no. 12 (2021): 2674. http://dx.doi.org/10.3390/plants10122674.
Full textWoo, Min Sun, Eunhak Lee, Woobin Lee, and Seongyong Kim. "Comparison of variational autoencoders for anomaly detection of electrocardiogram." Korean Data Analysis Society 26, no. 2 (2024): 489–99. http://dx.doi.org/10.37727/jkdas.2024.26.2.489.
Full textAnumasa, Srinivas, and P. K. Srijith. "Latent Time Neural Ordinary Differential Equations." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6010–18. http://dx.doi.org/10.1609/aaai.v36i6.20547.
Full textGrachten, Maarten, Stefan Lattner, and Emmanuel Deruty. "BassNet: A Variational Gated Autoencoder for Conditional Generation of Bass Guitar Tracks with Learned Interactive Control." Applied Sciences 10, no. 18 (2020): 6627. http://dx.doi.org/10.3390/app10186627.
Full textZhu, Zifan, Yingying Fan, Yinfei Kong, Jinchi Lv, and Fengzhu Sun. "DeepLINK: Deep learning inference using knockoffs with applications to genomics." Proceedings of the National Academy of Sciences 118, no. 36 (2021): e2104683118. http://dx.doi.org/10.1073/pnas.2104683118.
Full textHeinze-Deml, Christina, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen. "Latent Linear Adjustment Autoencoder v1.0: a novel method for estimating and emulating dynamic precipitation at high resolution." Geoscientific Model Development 14, no. 8 (2021): 4977–99. http://dx.doi.org/10.5194/gmd-14-4977-2021.
Full textTouloupas, Konstantinos, and Paul Peter Sotiriadis. "Mixed-Variable Bayesian Optimization for Analog Circuit Sizing through Device Representation Learning." Electronics 11, no. 19 (2022): 3127. http://dx.doi.org/10.3390/electronics11193127.
Full textXiang, Gang, and Kun Tian. "Spacecraft Intelligent Fault Diagnosis under Variable Working Conditions via Wasserstein Distance-Based Deep Adversarial Transfer Learning." International Journal of Aerospace Engineering 2021 (October 13, 2021): 1–16. http://dx.doi.org/10.1155/2021/6099818.
Full textZhu, Xianglin, Khalil Ur Rehman, Bo Wang, and Muhammad Shahzad. "Modern Soft-Sensing Modeling Methods for Fermentation Processes." Sensors 20, no. 6 (2020): 1771. http://dx.doi.org/10.3390/s20061771.
Full textKomorska, Iwona, and Andrzej Puchalski. "Condition Monitoring Using a Latent Space of Variational Autoencoder Trained Only on a Healthy Machine." Sensors 24, no. 21 (2024): 6825. http://dx.doi.org/10.3390/s24216825.
Full textJi, Shulei, and Xinyu Yang. "MusER: Musical Element-Based Regularization for Generating Symbolic Music with Emotion." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 12821–29. http://dx.doi.org/10.1609/aaai.v38i11.29178.
Full textPerry, R. Ian, Kelly Young, Moira Galbraith, Peter Chandler, Antonio Velez-Espino, and Steve Baillie. "Zooplankton variability in the Strait of Georgia, Canada, and relationships with the marine survivals of Chinook and Coho salmon." PLOS ONE 16, no. 1 (2021): e0245941. http://dx.doi.org/10.1371/journal.pone.0245941.
Full textHan, Bingyuan, Peiyan Duan, Chengcheng Zhou, et al. "Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network." Plants 13, no. 12 (2024): 1681. http://dx.doi.org/10.3390/plants13121681.
Full textZhao, Huan, Tingting Li, Yufeng Xiao, and Yu Wang. "Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation." Entropy 22, no. 9 (2020): 1055. http://dx.doi.org/10.3390/e22091055.
Full textBrunke, Michael A., Patrick Broxton, Jon Pelletier, et al. "Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5)." Journal of Climate 29, no. 9 (2016): 3441–61. http://dx.doi.org/10.1175/jcli-d-15-0307.1.
Full textKang, Zhiqiao. "Exploring the Effectiveness of Hyperparameters in Deep Convolution Generative Adversarial Networks." Transactions on Computer Science and Intelligent Systems Research 5 (August 12, 2024): 178–88. http://dx.doi.org/10.62051/h3sxs218.
Full textBandeen-Roche, Karen. "SIGNAL DETECTION AND VALIDATION IN AN ERA OF BIG GERONTOLOGICAL DATA." Innovation in Aging 6, Supplement_1 (2022): 178. http://dx.doi.org/10.1093/geroni/igac059.712.
Full textGuimard, Quentin, Lucile Sassatelli, Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Bimbo Alberto Del. "Deep Variational Learning for 360° Adaptive Streaming." ACM Transactions on Multimedia Computing, Communications and Applications 20, no. 9 (2024): 263. https://doi.org/10.1145/3643031.
Full textGuimard, Quentin, Lucile Sassatelli, Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Bimbo Alberto Del. "Deep Variational Learning for 360° Adaptive Streaming." ACM Transactions on Multimedia Computing, Communications and Applications 20, no. 9 (2024): 263. https://doi.org/10.1145/3643031.
Full textGuimard, Quentin, Lucile Sassatelli, Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Bimbo Alberto Del. "Deep Variational Learning for 360° Adaptive Streaming." ACM Transactions on Multimedia Computing, Communications and Applications 20, no. 9 (2024): 263. https://doi.org/10.1145/3643031.
Full textGuimard, Quentin, Lucile Sassatelli, Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Bimbo Alberto Del. "Deep Variational Learning for 360° Adaptive Streaming." ACM Transactions on Multimedia Computing, Communications and Applications 20, no. 9 (2024): 263. https://doi.org/10.1145/3643031.
Full textGuimard, Quentin, Lucile Sassatelli, Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Bimbo Alberto Del. "Deep Variational Learning for 360° Adaptive Streaming." ACM Transactions on Multimedia Computing, Communications and Applications 20, no. 9 (2024): 263. https://doi.org/10.1145/3643031.
Full textJasmin, Praful Bharadiya. "Exploring the Use of Recurrent Neural Networks for Time Series Forecasting." International Journal of Innovative Science and Research Technology 8, no. 5 (2023): 2023–27. https://doi.org/10.5281/zenodo.8020803.
Full textGaikwad, Akshay V., and Suyash Awate. "Deep Monte-Carlo EM for Semantic Segmentation using Weakly-and-Semi-Supervised Learning Using Very Few Expert Segmentations." Machine Learning for Biomedical Imaging 2, June 2024 (2024): 717–60. http://dx.doi.org/10.59275/j.melba.2024-2fgd.
Full textChunqi, Du, and Shinobu Hasegawa. "3dinfogan: 3d Models’ Reconstruction In Infogans." Asia-Pacific Journal of Information Technology and Multimedia 10, no. 02 (2021): 95–109. http://dx.doi.org/10.17576/apjitm-2021-1002-07.
Full textMinervini, Pasquale, Luca Franceschi, and Mathias Niepert. "Adaptive Perturbation-Based Gradient Estimation for Discrete Latent Variable Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9200–9208. http://dx.doi.org/10.1609/aaai.v37i8.26103.
Full textEiximeno, Benet, Arnau Miró, Ivette Rodríguez, and Oriol Lehmkuhl. "Toward the Usage of Deep Learning Surrogate Models in Ground Vehicle Aerodynamics." Mathematics 12, no. 7 (2024): 998. http://dx.doi.org/10.3390/math12070998.
Full textGou, Zixing, Yifan Sun, Zhebin Jin, Hanqiu Hu, and Weiyi Xia. "Label noise learning with the combination of CausalNL and CGAN models." Applied and Computational Engineering 79, no. 1 (2024): 97–106. http://dx.doi.org/10.54254/2755-2721/79/20241399.
Full textCarpenter, Chris. "Integrated Deep-Learning and Physics-Based Models Improve Production Prediction." Journal of Petroleum Technology 74, no. 11 (2022): 78–80. http://dx.doi.org/10.2118/1122-0078-jpt.
Full textKohjima, Masahiro. "Shuffled Deep Regression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13238–45. http://dx.doi.org/10.1609/aaai.v38i12.29224.
Full textZhu, Weijin, Yao Shen, Mingqian Liu, and Lizeth Patricia Aguirre Sanchez. "GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture Model." Computational Intelligence and Neuroscience 2022 (July 18, 2022): 1–13. http://dx.doi.org/10.1155/2022/7254462.
Full textPetkus, Andrew, Xinhui Wang, Susan Resnick, et al. "AFFECTIVE TRAJECTORIES: RISK OF DEMENTIA AND UNDERLYING STRUCTURAL BRAIN VARIABLES IN OLDER WOMEN." Innovation in Aging 6, Supplement_1 (2022): 230. http://dx.doi.org/10.1093/geroni/igac059.913.
Full textBeguš, Gašper. "Identity-Based Patterns in Deep Convolutional Networks: Generative Adversarial Phonology and Reduplication." Transactions of the Association for Computational Linguistics 9 (2021): 1180–96. http://dx.doi.org/10.1162/tacl_a_00421.
Full textMosser, Lukas, Olivier Dubrule, and Martin J. Blunt. "Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior." Mathematical Geosciences 52, no. 1 (2019): 53–79. http://dx.doi.org/10.1007/s11004-019-09832-6.
Full textShimaoka, Nanako, Shogo Okamoto, Yasuhiro Akiyama, and Yoji Yamada. "Linking Temporal Dominance of Sensations for Primary-Sensory and Multi-Sensory Attributes Using Canonical Correlation Analysis." Foods 11, no. 6 (2022): 781. http://dx.doi.org/10.3390/foods11060781.
Full textZhu, Xinqi, Chang Xu, and Dacheng Tao. "ContraFeat: Contrasting Deep Features for Semantic Discovery." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 11470–78. http://dx.doi.org/10.1609/aaai.v37i9.26356.
Full text