Academic literature on the topic 'Deep learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep learning"
Chagas, Edgar Thiago De Oliveira. "Deep Learning e suas aplicações na atualidade." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/administracao/deep-learning.
Full textWang, Yipu, and Stuart Perrin. "Deep Chinese Teaching and Learning Model Based on Deep Learning." International Journal of Languages, Literature and Linguistics 10, no. 1 (2024): 32–35. http://dx.doi.org/10.18178/ijlll.2024.10.1.479.
Full textJaiswal, Tarun, and Sushma Jaiswal. "Deep Learning in Medicine." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (2019): 212–17. http://dx.doi.org/10.31142/ijtsrd23641.
Full textChagas, Edgar Thiago De Oliveira. "Deep Learning and its applications today." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/business-administration/deep-learning-2.
Full textJaiswal, Tarun, and Sushma Jaiswal. "Deep Learning Based Pain Treatment." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (2019): 193–211. http://dx.doi.org/10.31142/ijtsrd23639.
Full textAthani Samarth Kumar, Abusufiyan. "Cryptocurrency Prediction using Deep Learning." International Journal of Science and Research (IJSR) 12, no. 3 (2023): 1253–57. http://dx.doi.org/10.21275/sr23319215511.
Full textBhadiyadra, Yash. "Object Detection with Deep Learning." International Journal of Science and Research (IJSR) 12, no. 7 (2023): 1300–1304. http://dx.doi.org/10.21275/mr23717204529.
Full textP C, Haris, and Dr Srikanth V. "Smart Eye Using Deep Learning." International Journal of Research Publication and Reviews 5, no. 3 (2024): 467–70. http://dx.doi.org/10.55248/gengpi.5.0324.0615.
Full textZitar, Raed Abu, Ammar EL-Hassan, and Oraib AL-Sahlee. "Deep Learning Recommendation System for Course Learning Outcomes Assessment." Journal of Advanced Research in Dynamical and Control Systems 11, no. 10-SPECIAL ISSUE (2019): 1491–78. http://dx.doi.org/10.5373/jardcs/v11sp10/20192993.
Full textAkgül, İsmail, and Yıldız Aydın. "OBJECT RECOGNITION WITH DEEP LEARNING AND MACHINE LEARNING METHODS." NWSA Academic Journals 17, no. 4 (2022): 54–61. http://dx.doi.org/10.12739/nwsa.2022.17.4.2a0189.
Full textDissertations / Theses on the topic "Deep learning"
Dufourq, Emmanuel. "Evolutionary deep learning." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30357.
Full textHe, Fengxiang. "Theoretical Deep Learning." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25674.
Full textFRACCAROLI, MICHELE. "Explainable Deep Learning." Doctoral thesis, Università degli studi di Ferrara, 2023. https://hdl.handle.net/11392/2503729.
Full textHalle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.
Full textGoh, Hanlin. "Learning deep visual representations." Paris 6, 2013. http://www.theses.fr/2013PA066356.
Full textGeirsson, Gunnlaugur. "Deep learning exotic derivatives." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430410.
Full textWülfing, Jan [Verfasser], and Martin [Akademischer Betreuer] Riedmiller. "Stable deep reinforcement learning." Freiburg : Universität, 2019. http://d-nb.info/1204826188/34.
Full textWhite, Martin. "Deep Learning Software Repositories." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639667.
Full textSun, Haozhe. "Modularity in deep learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG090.
Full textArnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.
Full textBooks on the topic "Deep learning"
Saefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.
Full textBishop, Christopher M., and Hugh Bishop. Deep Learning. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45468-4.
Full textKruse, René-Marcel, Benjamin Säfken, Alexander Silbersdorff, and Christoph Weisser, eds. Learning Deep Textwork. Göttingen University Press, 2021. http://dx.doi.org/10.17875/gup2021-1608.
Full textRodriguez, Andres. Deep Learning Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8.
Full textFergus, Paul, and Carl Chalmers. Applied Deep Learning. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04420-5.
Full textCalin, Ovidiu. Deep Learning Architectures. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.
Full textMatsushita, Kayo, ed. Deep Active Learning. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.
Full textMichelucci, Umberto. Applied Deep Learning. Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.
Full textMoons, Bert, Daniel Bankman, and Marian Verhelst. Embedded Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99223-5.
Full textBook chapters on the topic "Deep learning"
Meedeniya, Dulani. "State-of-the-Art Deep Learning Models: Part I." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-3.
Full textMeedeniya, Dulani. "Concepts and Terminology." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-2.
Full textMeedeniya, Dulani. "Introduction." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-1.
Full textMeedeniya, Dulani. "State-of-the-Art Deep Learning Models: Part II." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-4.
Full textMeedeniya, Dulani. "Performance Evaluation Techniques." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-7.
Full textMeedeniya, Dulani. "Enhancement of Deep Learning Architectures." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-6.
Full textMeedeniya, Dulani. "Advanced Learning Techniques." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-5.
Full textBishop, Christopher M., and Hugh Bishop. "Graph Neural Networks." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_13.
Full textBishop, Christopher M., and Hugh Bishop. "Convolutional Networks." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_10.
Full textBishop, Christopher M., and Hugh Bishop. "Single-layer Networks: Classification." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_5.
Full textConference papers on the topic "Deep learning"
Yao, Jenq-Foung, Yu-Hsiang John Huang, Cheng-Ying Yang, and Min-Shiang Hwang. "Deep Learning Applications." In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10869071.
Full textBaresi, Luciano, Davide Yi Xian Hu, Muhammad Irfan Mas’udi, and Giovanni Quattrocchi. "DILLEMA: Diffusion and Large Language Models for Multi-Modal Augmentation." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00010.
Full textKim, Somin, and Shin Yoo. "DANDI: Diffusion as Normative Distribution for Deep Neural Network Input." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00007.
Full textPeixoto, Myron, Davy Baía, Nathalia Nascimento, Paulo Alencar, Baldoino Fonseca, and Márcio Ribeiro. "On the Effectiveness of LLMs for Manual Test Verifications." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00012.
Full textLim, Gordon, Stefan Larson, and Kevin Leach. "Robust Testing for Deep Learning using Human Label Noise." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00009.
Full textAli, Qurban, Andrea Stocco, Leonardo Mariani, and Oliviero Riganelli. "OpenCat: Improving Interoperability of ADS Testing." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00013.
Full textKim, Naryeong, Sungmin Kang, Gabin An, and Shin Yoo. "Lachesis: Predicting LLM Inference Accuracy using Structural Properties of Reasoning Paths." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00008.
Full textPoenaru-Olaru, Lorena, Luis Cruz, Jan S. Rellermeyer, and Arie van Deursen. "Improving the Reliability of Failure Prediction Models through Concept Drift Monitoring." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00006.
Full textSteenhoek, Benjamin, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. "Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00011.
Full text"DEEP-ML 2019 Program Committee." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00007.
Full textReports on the topic "Deep learning"
Catanach, Thomas, and Jed Duersch. Efficient Generalizable Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1760400.
Full textDell, Melissa. Deep Learning for Economists. National Bureau of Economic Research, 2024. http://dx.doi.org/10.3386/w32768.
Full textGroh, Micah. NOvA Reconstruction using Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1462092.
Full textGeiss, Andrew, Joseph Hardin, Sam Silva, William Jr., Adam Varble, and Jiwen Fan. Deep Learning for Ensemble Forecasting. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769692.
Full textHarris, James, Shannon Kinkead, Dylan Fox, and Yang Ho. Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1855019.
Full textDraelos, Timothy John, Nadine E. Miner, Christopher C. Lamb, et al. Neurogenesis Deep Learning: Extending deep networks to accommodate new classes. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1505351.
Full textBalaji, Praveen. Detecting Stellar Streams through Deep Learning. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1637622.
Full textLi, Li. Deep Learning for Hydro-Biogeochemistry Processes. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769693.
Full textEydenberg, Michael, Lisa Batsch-Smith, Charles Bice, et al. Resilience Enhancements through Deep Learning Yields. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1890044.
Full textOskolkov, Nikolay. Deep Learning for the Life Sciences. Instats Inc., 2024. https://doi.org/10.61700/zjxxse1x3u05y1846.
Full text