Academic literature on the topic 'Deep learning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep learning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Deep learning"

1

Chagas, Edgar Thiago De Oliveira. "Deep Learning e suas aplicações na atualidade." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/administracao/deep-learning.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yipu, and Stuart Perrin. "Deep Chinese Teaching and Learning Model Based on Deep Learning." International Journal of Languages, Literature and Linguistics 10, no. 1 (2024): 32–35. http://dx.doi.org/10.18178/ijlll.2024.10.1.479.

Full text
Abstract:
Deep learning is a more situational and reflective way of learning that integrates complex knowledge and skills into intuitive thinking. As a language that closely combines sound, form and meaning, Chinese teaching and learning from the perspective of deep learning can help break through the limitations of the current teaching model that only focuses on certain language knowledge or cultural behaviors. This paper combines deep learning with international Chinese education, creates deep Chinese teaching and learning model including “four stages and ten steps”, and carries out practical applicat
APA, Harvard, Vancouver, ISO, and other styles
3

Jaiswal, Tarun, and Sushma Jaiswal. "Deep Learning in Medicine." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (2019): 212–17. http://dx.doi.org/10.31142/ijtsrd23641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chagas, Edgar Thiago De Oliveira. "Deep Learning and its applications today." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/business-administration/deep-learning-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jaiswal, Tarun, and Sushma Jaiswal. "Deep Learning Based Pain Treatment." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (2019): 193–211. http://dx.doi.org/10.31142/ijtsrd23639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Athani Samarth Kumar, Abusufiyan. "Cryptocurrency Prediction using Deep Learning." International Journal of Science and Research (IJSR) 12, no. 3 (2023): 1253–57. http://dx.doi.org/10.21275/sr23319215511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhadiyadra, Yash. "Object Detection with Deep Learning." International Journal of Science and Research (IJSR) 12, no. 7 (2023): 1300–1304. http://dx.doi.org/10.21275/mr23717204529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

P C, Haris, and Dr Srikanth V. "Smart Eye Using Deep Learning." International Journal of Research Publication and Reviews 5, no. 3 (2024): 467–70. http://dx.doi.org/10.55248/gengpi.5.0324.0615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zitar, Raed Abu, Ammar EL-Hassan, and Oraib AL-Sahlee. "Deep Learning Recommendation System for Course Learning Outcomes Assessment." Journal of Advanced Research in Dynamical and Control Systems 11, no. 10-SPECIAL ISSUE (2019): 1491–78. http://dx.doi.org/10.5373/jardcs/v11sp10/20192993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akgül, İsmail, and Yıldız Aydın. "OBJECT RECOGNITION WITH DEEP LEARNING AND MACHINE LEARNING METHODS." NWSA Academic Journals 17, no. 4 (2022): 54–61. http://dx.doi.org/10.12739/nwsa.2022.17.4.2a0189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Deep learning"

1

Dufourq, Emmanuel. "Evolutionary deep learning." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30357.

Full text
Abstract:
The primary objective of this thesis is to investigate whether evolutionary concepts can improve the performance, speed and convenience of algorithms in various active areas of machine learning research. Deep neural networks are exhibiting an explosion in the number of parameters that need to be trained, as well as the number of permutations of possible network architectures and hyper-parameters. There is little guidance on how to choose these and brute-force experimentation is prohibitively time consuming. We show that evolutionary algorithms can help tame this explosion of freedom, by develo
APA, Harvard, Vancouver, ISO, and other styles
2

He, Fengxiang. "Theoretical Deep Learning." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25674.

Full text
Abstract:
Deep learning has long been criticised as a black-box model for lacking sound theoretical explanation. During the PhD course, I explore and establish theoretical foundations for deep learning. In this thesis, I present my contributions positioned upon existing literature: (1) analysing the generalizability of the neural networks with residual connections via complexity and capacity-based hypothesis complexity measures; (2) modeling stochastic gradient descent (SGD) by stochastic differential equations (SDEs) and their dynamics, and further characterizing the generalizability of deep learning;
APA, Harvard, Vancouver, ISO, and other styles
3

FRACCAROLI, MICHELE. "Explainable Deep Learning." Doctoral thesis, Università degli studi di Ferrara, 2023. https://hdl.handle.net/11392/2503729.

Full text
Abstract:
Il grande successo che il Deep Learning ha ottenuto in ambiti strategici per la nostra società quali l'industria, la difesa, la medicina etc., ha portanto sempre più realtà a investire ed esplorare l'utilizzo di questa tecnologia. Ormai si possono trovare algoritmi di Machine Learning e Deep Learning quasi in ogni ambito della nostra vita. Dai telefoni, agli elettrodomestici intelligenti fino ai veicoli che guidiamo. Quindi si può dire che questa tecnologia pervarsiva è ormai a contatto con le nostre vite e quindi dobbiamo confrontarci con essa. Da questo nasce l’eXplainable Artificial Intelli
APA, Harvard, Vancouver, ISO, and other styles
4

Halle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.

Full text
Abstract:
Die Topologieoptimierung ist die Suche einer optimalen Bauteilgeometrie in Abhängigkeit des Einsatzfalls. Für komplexe Probleme kann die Topologieoptimierung aufgrund eines hohen Detailgrades viel Zeit- und Rechenkapazität erfordern. Diese Nachteile der Topologieoptimierung sollen mittels Deep Learning reduziert werden, so dass eine Topologieoptimierung dem Konstrukteur als sekundenschnelle Hilfe dient. Das Deep Learning ist die Erweiterung künstlicher neuronaler Netzwerke, mit denen Muster oder Verhaltensregeln erlernt werden können. So soll die bislang numerisch berechnete Topologieoptimieru
APA, Harvard, Vancouver, ISO, and other styles
5

Goh, Hanlin. "Learning deep visual representations." Paris 6, 2013. http://www.theses.fr/2013PA066356.

Full text
Abstract:
Les avancées récentes en apprentissage profond et en traitement d'image présentent l'opportunité d'unifier ces deux champs de recherche complémentaires pour une meilleure résolution du problème de classification d'images dans des catégories sémantiques. L'apprentissage profond apporte au traitement d'image le pouvoir de représentation nécessaire à l'amélioration des performances des méthodes de classification d'images. Cette thèse propose de nouvelles méthodes d'apprentissage de représentations visuelles profondes pour la résolution de cette tache. L'apprentissage profond a été abordé sous deu
APA, Harvard, Vancouver, ISO, and other styles
6

Geirsson, Gunnlaugur. "Deep learning exotic derivatives." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430410.

Full text
Abstract:
Monte Carlo methods in derivative pricing are computationally expensive, in particular for evaluating models partial derivatives with regard to inputs. This research proposes the use of deep learning to approximate such valuation models for highly exotic derivatives, using automatic differentiation to evaluate input sensitivities. Deep learning models are trained to approximate Phoenix Autocall valuation using a proprietary model used by Svenska Handelsbanken AB. Models are trained on large datasets of low-accuracy (10^4 simulations) Monte Carlo data, successfully learning the true model with
APA, Harvard, Vancouver, ISO, and other styles
7

Wülfing, Jan [Verfasser], and Martin [Akademischer Betreuer] Riedmiller. "Stable deep reinforcement learning." Freiburg : Universität, 2019. http://d-nb.info/1204826188/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

White, Martin. "Deep Learning Software Repositories." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639667.

Full text
Abstract:
Bridging the abstraction gap between artifacts and concepts is the essence of software engineering (SE) research problems. SE researchers regularly use machine learning to bridge this gap, but there are three fundamental issues with traditional applications of machine learning in SE research. Traditional applications are too reliant on labeled data. They are too reliant on human intuition, and they are not capable of learning expressive yet efficient internal representations. Ultimately, SE research needs approaches that can automatically learn representations of massive, heterogeneous, datase
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Haozhe. "Modularity in deep learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG090.

Full text
Abstract:
L'objectif de cette thèse est de rendre l'apprentissage profond plus efficace en termes de ressources en appliquant le principe de modularité. La thèse comporte plusieurs contributions principales : une étude de la littérature sur la modularité dans l'apprentissage profond; la conception d'OmniPrint et de Meta-Album, des outils qui facilitent l'étude de la modularité des données; des études de cas examinant les effets de l'apprentissage épisodique, un exemple de modularité des données; un mécanisme d'évaluation modulaire appelé LTU pour évaluer les risques en matière de protection de la vie pr
APA, Harvard, Vancouver, ISO, and other styles
10

Arnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.

Full text
Abstract:
Since 2006, deep learning algorithms which rely on deep architectures with several layers of increasingly complex representations have been able to outperform state-of-the-art methods in several settings. Deep architectures can be very efficient in terms of the number of parameters required to represent complex operations which makes them very appealing to achieve good generalization with small amounts of data. Although training deep architectures has traditionally been considered a difficult problem, a successful approach has been to employ an unsupervised layer-wise pre-training step to init
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Deep learning"

1

Saefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bishop, Christopher M., and Hugh Bishop. Deep Learning. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45468-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kruse, René-Marcel, Benjamin Säfken, Alexander Silbersdorff, and Christoph Weisser, eds. Learning Deep Textwork. Göttingen University Press, 2021. http://dx.doi.org/10.17875/gup2021-1608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rodriguez, Andres. Deep Learning Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fergus, Paul, and Carl Chalmers. Applied Deep Learning. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04420-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calin, Ovidiu. Deep Learning Architectures. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matsushita, Kayo, ed. Deep Active Learning. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michelucci, Umberto. Applied Deep Learning. Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moons, Bert, Daniel Bankman, and Marian Verhelst. Embedded Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99223-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Deep learning"

1

Meedeniya, Dulani. "State-of-the-Art Deep Learning Models: Part I." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meedeniya, Dulani. "Concepts and Terminology." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meedeniya, Dulani. "Introduction." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meedeniya, Dulani. "State-of-the-Art Deep Learning Models: Part II." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meedeniya, Dulani. "Performance Evaluation Techniques." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meedeniya, Dulani. "Enhancement of Deep Learning Architectures." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meedeniya, Dulani. "Advanced Learning Techniques." In Deep Learning. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003390824-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bishop, Christopher M., and Hugh Bishop. "Graph Neural Networks." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bishop, Christopher M., and Hugh Bishop. "Convolutional Networks." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bishop, Christopher M., and Hugh Bishop. "Single-layer Networks: Classification." In Deep Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45468-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Deep learning"

1

Yao, Jenq-Foung, Yu-Hsiang John Huang, Cheng-Ying Yang, and Min-Shiang Hwang. "Deep Learning Applications." In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10869071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baresi, Luciano, Davide Yi Xian Hu, Muhammad Irfan Mas’udi, and Giovanni Quattrocchi. "DILLEMA: Diffusion and Large Language Models for Multi-Modal Augmentation." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Somin, and Shin Yoo. "DANDI: Diffusion as Normative Distribution for Deep Neural Network Input." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peixoto, Myron, Davy Baía, Nathalia Nascimento, Paulo Alencar, Baldoino Fonseca, and Márcio Ribeiro. "On the Effectiveness of LLMs for Manual Test Verifications." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lim, Gordon, Stefan Larson, and Kevin Leach. "Robust Testing for Deep Learning using Human Label Noise." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ali, Qurban, Andrea Stocco, Leonardo Mariani, and Oliviero Riganelli. "OpenCat: Improving Interoperability of ADS Testing." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Naryeong, Sungmin Kang, Gabin An, and Shin Yoo. "Lachesis: Predicting LLM Inference Accuracy using Structural Properties of Reasoning Paths." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poenaru-Olaru, Lorena, Luis Cruz, Jan S. Rellermeyer, and Arie van Deursen. "Improving the Reliability of Failure Prediction Models through Concept Drift Monitoring." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steenhoek, Benjamin, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. "Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation." In 2025 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2025. https://doi.org/10.1109/deeptest66595.2025.00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"DEEP-ML 2019 Program Committee." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Deep learning"

1

Catanach, Thomas, and Jed Duersch. Efficient Generalizable Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1760400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dell, Melissa. Deep Learning for Economists. National Bureau of Economic Research, 2024. http://dx.doi.org/10.3386/w32768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Groh, Micah. NOvA Reconstruction using Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1462092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geiss, Andrew, Joseph Hardin, Sam Silva, William Jr., Adam Varble, and Jiwen Fan. Deep Learning for Ensemble Forecasting. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harris, James, Shannon Kinkead, Dylan Fox, and Yang Ho. Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1855019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Draelos, Timothy John, Nadine E. Miner, Christopher C. Lamb, et al. Neurogenesis Deep Learning: Extending deep networks to accommodate new classes. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1505351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balaji, Praveen. Detecting Stellar Streams through Deep Learning. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1637622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Li. Deep Learning for Hydro-Biogeochemistry Processes. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eydenberg, Michael, Lisa Batsch-Smith, Charles Bice, et al. Resilience Enhancements through Deep Learning Yields. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1890044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oskolkov, Nikolay. Deep Learning for the Life Sciences. Instats Inc., 2024. https://doi.org/10.61700/zjxxse1x3u05y1846.

Full text
Abstract:
This intensive workshop provides a comprehensive exploration of deep learning applications in life sciences, focusing on practical techniques for analyzing complex biological datasets. Participants will gain theoretical and hands-on experience with deep learning tools such as TensorFlow and Keras, learning to construct neural networks and apply them to areas like genomics and personalized medicine.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!