To see the other types of publications on this topic, follow the link: Deep Learning, Computer Vision, Object Detection.

Dissertations / Theses on the topic 'Deep Learning, Computer Vision, Object Detection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Deep Learning, Computer Vision, Object Detection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kohmann, Erich. "Tecniche di deep learning per l'object detection." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19637/.

Full text
Abstract:
L’object detection è uno dei principali problemi nell’ambito della computer vision. Negli ultimi anni, con l’avvento delle reti neurali e del deep learning, sono stati fatti notevoli progressi nei metodi per affrontare questo problema. Questa tesi intende fornire una rassegna dei principali modelli di object detection basati su deep learning, di cui si illustrano le caratteristiche fondamentali e gli elementi che li contraddistinguono dai modelli precedenti. Dopo un infarinatura iniziale sul deep learning e sulle reti neurali in genere, vengono presentati i modelli caratterizzati da tecniche
APA, Harvard, Vancouver, ISO, and other styles
2

Andersson, Dickfors Robin, and Nick Grannas. "OBJECT DETECTION USING DEEP LEARNING ON METAL CHIPS IN MANUFACTURING." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55068.

Full text
Abstract:
Designing cutting tools for the turning industry, providing optimal cutting parameters is of importance for both the client, and for the company's own research. By examining the metal chips that form in the turning process, operators can recommend optimal cutting parameters. Instead of doing manual classification of metal chips that come from the turning process, an automated approach of detecting chips and classification is preferred. This thesis aims to evaluate if such an approach is possible using either a Convolutional Neural Network (CNN) or a CNN feature extraction coupled with machine
APA, Harvard, Vancouver, ISO, and other styles
3

Arefiyan, Khalilabad Seyyed Mostafa. "Deep Learning Models for Context-Aware Object Detection." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88387.

Full text
Abstract:
In this thesis, we present ContextNet, a novel general object detection framework for incorporating context cues into a detection pipeline. Current deep learning methods for object detection exploit state-of-the-art image recognition networks for classifying the given region-of-interest (ROI) to predefined classes and regressing a bounding-box around it without using any information about the corresponding scene. ContextNet is based on an intuitive idea of having cues about the general scene (e.g., kitchen and library), and changes the priors about presence/absence of some object classes. We p
APA, Harvard, Vancouver, ISO, and other styles
4

Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.

Full text
Abstract:
In the last decade, Machine Learning techniques have been used in different fields, ranging from finance to healthcare and even marketing. Amongst all these techniques, the ones adopting a Deep Learning approach were revealed to outperform humans in tasks such as object detection, image classification and speech recognition. This thesis introduces the concept of Edge AI: that is the possibility to build learning models capable of making inference locally, without any dependence on expensive servers or cloud services. A first case study we consider is based on the Google AIY Vision Kit, an inte
APA, Harvard, Vancouver, ISO, and other styles
5

Espis, Andrea. "Object detection and semantic segmentation for assisted data labeling." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Find full text
Abstract:
The automation of data labeling tasks is a solution to the errors and time costs related to human labeling. In this thesis work CenterNet, DeepLabV3, and K-Means applied to the RGB color space, are deployed to build a pipeline for Assisted data labeling: a semi-automatic process to iteratively improve the quality of the annotations. The proposed pipeline pointed out a total of 1547 wrong and missing annotations when applied to a dataset originally containing 8,300 annotations. Moreover, the quality of each annotation has been drastically improved, and at the same time, more than 600 hours of w
APA, Harvard, Vancouver, ISO, and other styles
6

Norrstig, Andreas. "Visual Object Detection using Convolutional Neural Networks in a Virtual Environment." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156609.

Full text
Abstract:
Visual object detection is a popular computer vision task that has been intensively investigated using deep learning on real data. However, data from virtual environments have not received the same attention. A virtual environment enables generating data for locations that are not easily reachable for data collection, e.g. aerial environments. In this thesis, we study the problem of object detection in virtual environments, more specifically an aerial virtual environment. We use a simulator, to generate a synthetic data set of 16 different types of vehicles captured from an airplane. To study
APA, Harvard, Vancouver, ISO, and other styles
7

Dickens, James. "Depth-Aware Deep Learning Networks for Object Detection and Image Segmentation." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42619.

Full text
Abstract:
The rise of convolutional neural networks (CNNs) in the context of computer vision has occurred in tandem with the advancement of depth sensing technology. Depth cameras are capable of yielding two-dimensional arrays storing at each pixel the distance from objects and surfaces in a scene from a given sensor, aligned with a regular color image, obtaining so-called RGBD images. Inspired by prior models in the literature, this work develops a suite of RGBD CNN models to tackle the challenging tasks of object detection, instance segmentation, and semantic segmentation. Prominent architectur
APA, Harvard, Vancouver, ISO, and other styles
8

Solini, Arianna. "Applicazione di Deep Learning e Computer Vision ad un Caso d'uso aziendale: Progettazione, Risoluzione ed Analisi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Nella computer vision, sono oramai più di dieci anni che si parla di Machine Learning (ML), con l'obiettivo di creare sistemi autonomi che siano in grado di realizzare modelli approssimati della realtà tridimensionale partendo da immagini bidimensionali. Grazie a questa capacità si possono interpretare e comprendere le immagini, emulando la vista umana. Molti ricercatori hanno creato reti neurali in grado di sfidarsi su grandi dataset di milioni di immagini e, come conseguenza, si è ottenuto il continuo miglioramento delle performance di classificazione di immagini da parte delle reti e la cap
APA, Harvard, Vancouver, ISO, and other styles
9

Cuan, Bonan. "Deep similarity metric learning for multiple object tracking." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI065.

Full text
Abstract:
Le suivi d’objets multiples dans une scène est une tâche importante dans le domaine de la vision par ordinateur, et présente toujours de très nombreux verrous. Les objets doivent être détectés et distingués les uns des autres de manière continue et simultanée. Les approches «suivi par détection» sont largement utilisées, où la détection des objets est d’abord réalisée sur toutes les frames, puis le suivi est ramené à un problème d’association entre les détections d’un même objet et les trajectoires identifiées. La plupart des algorithmes de suivi associent des modèles de mouvement et des modèl
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zhe. "Augmented Context Modelling Neural Networks." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20654.

Full text
Abstract:
Contexts provide beneficial information for machine-based image understanding tasks. However, existing context modelling methods still cannot fully exploit contexts, especially for object recognition and detection. In this thesis, we develop augmented context modelling neural networks to better utilize contexts for different object recognition and detection tasks. Our contributions are two-fold: 1) we introduce neural networks to better model instance-level visual relationships; 2) we introduce neural network-based algorithms to better utilize contexts from 3D information and synthesized data
APA, Harvard, Vancouver, ISO, and other styles
11

Gustafsson, Fredrik, and Erik Linder-Norén. "Automotive 3D Object Detection Without Target Domain Annotations." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148585.

Full text
Abstract:
In this thesis we study a perception problem in the context of autonomous driving. Specifically, we study the computer vision problem of 3D object detection, in which objects should be detected from various sensor data and their position in the 3D world should be estimated. We also study the application of Generative Adversarial Networks in domain adaptation techniques, aiming to improve the 3D object detection model's ability to transfer between different domains. The state-of-the-art Frustum-PointNet architecture for LiDAR-based 3D object detection was implemented and found to closely match
APA, Harvard, Vancouver, ISO, and other styles
12

Ogier, du Terrail Jean. "Réseaux de neurones convolutionnels profonds pour la détection de petits véhicules en imagerie aérienne." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC276/document.

Full text
Abstract:
Cette thèse présente une tentative d'approche du problème de la détection et discrimination des petits véhicules dans des images aériennes en vue verticale par l'utilisation de techniques issues de l'apprentissage profond ou "deep-learning". Le caractère spécifique du problème permet d'utiliser des techniques originales mettant à profit les invariances des automobiles et autres avions vus du ciel.Nous commencerons par une étude systématique des détecteurs dits "single-shot", pour ensuite analyser l'apport des systèmes à plusieurs étages de décision sur les performances de détection. Enfin nous
APA, Harvard, Vancouver, ISO, and other styles
13

Taurone, Francesco. "3D Object Recognition from a Single Image via Patch Detection by a Deep CNN." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18669/.

Full text
Abstract:
This thesis describes the development of a new technique for recognizing the 3D pose of an object via a single image. The whole project is based on a CNN for recognizing patches on the object, that we use for estimating the pose given an a priori model. The positions of the patches, together with the knowledge of their coordinates in the model, make the estimation of the pose possible through a solution of a PnP problem. The CNN chosen for this project is Yolo. In order to build the training dataset for the network, a new approach is used. Instead of labeling each individual training image
APA, Harvard, Vancouver, ISO, and other styles
14

Al, Hakim Ezeddin. "3D YOLO: End-to-End 3D Object Detection Using Point Clouds." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234242.

Full text
Abstract:
For safe and reliable driving, it is essential that an autonomous vehicle can accurately perceive the surrounding environment. Modern sensor technologies used for perception, such as LiDAR and RADAR, deliver a large set of 3D measurement points known as a point cloud. There is a huge need to interpret the point cloud data to detect other road users, such as vehicles and pedestrians. Many research studies have proposed image-based models for 2D object detection. This thesis takes it a step further and aims to develop a LiDAR-based 3D object detection model that operates in real-time, with empha
APA, Harvard, Vancouver, ISO, and other styles
15

Fucili, Mattia. "3D object detection from point clouds with dense pose voters." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17616/.

Full text
Abstract:
Il riconoscimento di oggetti è sempre stato un compito sfidante per la Computer Vision. Trova applicazione in molti campi, principalmente nell’industria, come ad esempio per permettere ad un robot di trovare gli oggetti da afferrare. Negli ultimi decenni tali compiti hanno trovato nuovi modi di essere raggiunti grazie alla riscoperta delle Reti Neurali, in particolare le Reti Neurali Convoluzionali. Questo tipo di reti ha raggiunto ottimi risultati in molte applicazioni per il riconoscimento e la classificazione degli oggetti. La tendenza, ora, `e quella di utilizzare tali reti anche nell’indust
APA, Harvard, Vancouver, ISO, and other styles
16

Capuzzo, Davide. "3D StixelNet Deep Neural Network for 3D object detection stixel-based." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22017/.

Full text
Abstract:
In this thesis it has been presented an algorithm of deep learning for 3D object detection from the point cloud in an outdoor environment. This algorithm is feed with stixel, a medium-type data generates starting from a point cloud or depth map. A stixel can be think as a small rectangle that start form the base of the road and then rises until the top of the obstacle summarizing the vertical surface of an object. The goal of stixel is to compress the data coming from sensors in order to have a fast transmission without losing information. The algorithm to generate stixel is a novel algorithm
APA, Harvard, Vancouver, ISO, and other styles
17

Azizpour, Hossein. "Visual Representations and Models: From Latent SVM to Deep Learning." Doctoral thesis, KTH, Datorseende och robotik, CVAP, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192289.

Full text
Abstract:
Two important components of a visual recognition system are representation and model. Both involves the selection and learning of the features that are indicative for recognition and discarding those features that are uninformative. This thesis, in its general form, proposes different techniques within the frameworks of two learning systems for representation and modeling. Namely, latent support vector machines (latent SVMs) and deep learning. First, we propose various approaches to group the positive samples into clusters of visually similar instances. Given a fixed representation, the sample
APA, Harvard, Vancouver, ISO, and other styles
18

Kalogeiton, Vasiliki. "Localizing spatially and temporally objects and actions in videos." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28984.

Full text
Abstract:
The rise of deep learning has facilitated remarkable progress in video understanding. This thesis addresses three important tasks of video understanding: video object detection, joint object and action detection, and spatio-temporal action localization. Object class detection is one of the most important challenges in computer vision. Object detectors are usually trained on bounding-boxes from still images. Recently, video has been used as an alternative source of data. Yet, training an object detector on one domain (either still images or videos) and testing on the other one results in a sign
APA, Harvard, Vancouver, ISO, and other styles
19

Söderlund, Henrik. "Real-time Detection and Tracking of Moving Objects Using Deep Learning and Multi-threaded Kalman Filtering : A joint solution of 3D object detection and tracking for Autonomous Driving." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160180.

Full text
Abstract:
Perception for autonomous drive systems is the most essential function for safe and reliable driving. LiDAR sensors can be used for perception and are vying for being crowned as an essential element in this task. In this thesis, we present a novel real-time solution for detection and tracking of moving objects which utilizes deep learning based 3D object detection. Moreover, we present a joint solution which utilizes the predictability of Kalman Filters to infer object properties and semantics to the object detection algorithm, resulting in a closed loop of object detection and object tracking
APA, Harvard, Vancouver, ISO, and other styles
20

Peng, Zeng. "Pedestrian Tracking by using Deep Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302107.

Full text
Abstract:
This project aims at using deep learning to solve the pedestrian tracking problem for Autonomous driving usage. The research area is in the domain of computer vision and deep learning. Multi-Object Tracking (MOT) aims at tracking multiple targets simultaneously in a video data. The main application scenarios of MOT are security monitoring and autonomous driving. In these scenarios, we often need to track many targets at the same time which is not possible with only object detection or single object tracking algorithms for their lack of stability and usability. Therefore we need to explore the
APA, Harvard, Vancouver, ISO, and other styles
21

Papakis, Ioannis. "A Graph Convolutional Neural Network Based Approach for Object Tracking Using Augmented Detections With Optical Flow." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103372.

Full text
Abstract:
This thesis presents a novel method for online Multi-Object Tracking (MOT) using Graph Convolutional Neural Network (GCNN) based feature extraction and end-to-end feature matching for object association. The Graph based approach incorporates both appearance and geometry of objects at past frames as well as the current frame into the task of feature learning. This new paradigm enables the network to leverage the "contextual" information of the geometry of objects and allows us to model the interactions among the features of multiple objects. Another central innovation of the proposed framework
APA, Harvard, Vancouver, ISO, and other styles
22

Mhalla, Ala. "Multi-object detection and tracking in video sequences." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC084/document.

Full text
Abstract:
Le travail développé dans cette thèse porte sur l'analyse de séquences vidéo. Cette dernière est basée sur 3 taches principales : la détection, la catégorisation et le suivi des objets. Le développement de solutions fiables pour l'analyse de séquences vidéo ouvre de nouveaux horizons pour plusieurs applications telles que les systèmes de transport intelligents, la vidéosurveillance et la robotique. Dans cette thèse, nous avons mis en avant plusieurs contributions pour traiter les problèmes de détection et de suivi d'objets multiples sur des séquences vidéo. Les techniques proposées sont basées
APA, Harvard, Vancouver, ISO, and other styles
23

Grossman, Mikael. "Proposal networks in object detection." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241918.

Full text
Abstract:
Locating and extracting useful data from images is a task that has been revolutionized in the last decade as computing power has risen to such a level to use deep neural networks with success. A type of neural network that uses the convolutional operation called convolutional neural network (CNN) is suited for image related tasks. Using the convolution operation creates opportunities for the network to learn their own filters, that previously had to be hand engineered. For locating objects in an image the state-of-the-art Faster R-CNN model predicts objects in two parts. Firstly, the region pro
APA, Harvard, Vancouver, ISO, and other styles
24

Moussallik, Laila. "Towards Condition-Based Maintenance of Catenary wires using computer vision : Deep Learning applications on eMaintenance & Industrial AI for railway industry." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83123.

Full text
Abstract:
Railways are a main element of a sustainable transport policy in several countries as they are considered a safe, efficient and green mode of transportation. Owing to these advantages, there is a cumulative request for the railway industry to increase the performance, the capacity and the availability in addition to safely transport goods and people at higher speeds. To meet the demand, large adjustment of the infrastructure and improvement of maintenance process are required.  Inspection activities are essential in establishing the required maintenance, and it is periodically required to redu
APA, Harvard, Vancouver, ISO, and other styles
25

IACONO, MASSIMILIANO. "Object detection and recognition with event driven cameras." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1005981.

Full text
Abstract:
This thesis presents study, analysis and implementation of algorithms to perform object detection and recognition using an event-based cam era. This sensor represents a novel paradigm which opens a wide range of possibilities for future developments of computer vision. In partic ular it allows to produce a fast, compressed, illumination invariant output, which can be exploited for robotic tasks, where fast dynamics and significant illumination changes are frequent. The experiments are carried out on the neuromorphic version of the iCub humanoid platform. The robot is equipped with a nov
APA, Harvard, Vancouver, ISO, and other styles
26

Lamberti, Lorenzo. "A deep learning solution for industrial OCR applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19777/.

Full text
Abstract:
This thesis describes a project developed throughout a six months internship in the Machine Vision Laboratory of Datalogic based in Pasadena, California. The project aims to develop a deep learning system as a possible solution for industrial optical character recognition applications. In particular, the focus falls on a specific algorithm called You Only Look Once (YOLO), which is a general-purpose object detector based on convolutional neural networks that currently offers state-of-the-art performances in terms of trade-off between speed and accuracy. This algorithm is indeed well known fo
APA, Harvard, Vancouver, ISO, and other styles
27

Cottignoli, Lorenzo. "Strumento di Realtà Aumentata su Dispositivi Mobili per Labeling di Immagini Semi-Automatico." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17734/.

Full text
Abstract:
In questa tesi verrà proposta l'implementazione di un sistema innovativo di realtà aumentata su dispositivi mobili per il labeling semi-automatico di immagini. L'obiettivo di questa tesi è quello di fornire uno strumento di supporto semplice ed intuitivo, in grado di ridurre drasticamente i tempi di generazione di dataset, necessari per l'addestramento delle reti neurali per l'Object Detection. Per questo motivo, è stata sviluppata un'applicazione mobile per Android che permetta la creazione di dataset in maniera semi-automatica. Inoltre, è stato realizzato uno script Python per desktop in g
APA, Harvard, Vancouver, ISO, and other styles
28

Arcidiacono, Claudio Salvatore. "An empirical study on synthetic image generation techniques for object detectors." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235502.

Full text
Abstract:
Convolutional Neural Networks are a very powerful machine learning tool that outperformed other techniques in image recognition tasks. The biggest drawback of this method is the massive amount of training data required, since producing training data for image recognition tasks is very labor intensive. To tackle this issue, different techniques have been proposed to generate synthetic training data automatically. These synthetic data generation techniques can be grouped in two categories: the first category generates synthetic images using computer graphic software and CAD models of the objects
APA, Harvard, Vancouver, ISO, and other styles
29

Schennings, Jacob. "Deep Convolutional Neural Networks for Real-Time Single Frame Monocular Depth Estimation." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336923.

Full text
Abstract:
Vision based active safety systems have become more frequently occurring in modern vehicles to estimate depth of the objects ahead and for autonomous driving (AD) and advanced driver-assistance systems (ADAS). In this thesis a lightweight deep convolutional neural network performing real-time depth estimation on single monocular images is implemented and evaluated. Many of the vision based automatic brake systems in modern vehicles only detect pre-trained object types such as pedestrians and vehicles. These systems fail to detect general objects such as road debris and roadside obstacles. In s
APA, Harvard, Vancouver, ISO, and other styles
30

Pitteri, Giorgia. "3D Object Pose Estimation in Industrial Context." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0202.

Full text
Abstract:
La détection d'objets 3D et l'estimation de leur pose à partir d'images sont très importantes pour des tâches comme la robotique et la réalité augmentée et font l'objet d'intenses recherches depuis le début de la vision par ordinateur. D'importants progrès ont été réalisés récemment grâce au développement des méthodes basées sur l'apprentissage profond. Ce type d'approche fait néanmoins face à plusieurs obstacles majeurs qui se révèlent en milieu industriel, notamment la gestion des objets contenant des symétries et la généralisation à de nouveaux objets jamais vus par les réseaux lors de l'ap
APA, Harvard, Vancouver, ISO, and other styles
31

Grard, Matthieu. "Generic instance segmentation for object-oriented bin-picking." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC015.

Full text
Abstract:
Le dévracage robotisé est une tâche industrielle en forte croissance visant à automatiser le déchargement par unité d’une pile d’instances d'objet en vrac pour faciliter des traitements ultérieurs tels que la formation de kits ou l’assemblage de composants. Cependant, le modèle explicite des objets est souvent indisponible dans de nombreux secteurs industriels, notamment alimentaire et automobile, et les instances d'objet peuvent présenter des variations intra-classe, par exemple en raison de déformations élastiques.Les techniques d’estimation de pose, qui nécessitent un modèle explicite et su
APA, Harvard, Vancouver, ISO, and other styles
32

Rispoli, Luca. "Un approccio deep learning-based per il conteggio di persone tramite videocamere low-cost in un contesto Smart Campus." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19567/.

Full text
Abstract:
I più recenti progressi tecnologici hanno provocato una rapida evoluzione del settore delle tecnologie cosiddette Smart, che, ad oggi, vengono integrati in un vasto numero di sistemi. La diffusione di tali tecnologie non si è tuttavia limitata a dispositivi ed apparecchiature informatiche, ma ha coinvolto anche altri settori, come quello edilizio, la quale influenza ha dato vita al concetto di "smart building". Un edificio intelligente ha lo scopo di offrire ai suoi abitanti un elevato livello di comfort, creando un ecosistema in cui i vari dispositivi elettronici possono operare interagendo
APA, Harvard, Vancouver, ISO, and other styles
33

Suzano, Massa Francisco Vitor. "Mise en relation d'images et de modèles 3D avec des réseaux de neurones convolutifs." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1198/document.

Full text
Abstract:
La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibilités pour un raisonnement à un niveau 3D sur les photographies. Cette thèse étudie l'utilisation des réseaux de neurones convolutifs (CNN) pour mettre en relation les modèles 3D et les images.Nous présentons tout d'abord deux contributions qui sont utilisées tout au long de cette thèse : une bibliothèque pour la réduction automatique de la mémoire pour les CNN profonds, et une étude des représentations internes apprises par les CNN pour la mise en correspondance d'images appartenant à des domain
APA, Harvard, Vancouver, ISO, and other styles
34

Carletti, Angelo. "Development of a machine learning algorithm for the automatic analysis of microscopy images in an in-vitro diagnostic platform." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
In this thesis we present the development of machine learning algorithms for single cell analysis in an in-vitro diagnostic platform for Cellply, a startup that operates in precision medicine. We researched the state of the art of deep learning for biomedical image analysis, and we analyzed the impact that convolutional neural networks have had in object detection tasks. Then we compared neural networks that are currently used for cell detection, and we chose the one (i.e. Stardist) that is able to perform a more efficient detection also in a crowded cells context. We could train models usi
APA, Harvard, Vancouver, ISO, and other styles
35

Sievert, Rolf. "Instance Segmentation of Multiclass Litter and Imbalanced Dataset Handling : A Deep Learning Model Comparison." Thesis, Linköpings universitet, Datorseende, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175173.

Full text
Abstract:
Instance segmentation has a great potential for improving the current state of littering by autonomously detecting and segmenting different categories of litter. With this information, litter could, for example, be geotagged to aid litter pickers or to give precise locational information to unmanned vehicles for autonomous litter collection. Land-based litter instance segmentation is a relatively unexplored field, and this study aims to give a comparison of the instance segmentation models Mask R-CNN and DetectoRS using the multiclass litter dataset called Trash Annotations in Context (TACO) i
APA, Harvard, Vancouver, ISO, and other styles
36

Gao, Yuan. "Surround Vision Object Detection Using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231929.

Full text
Abstract:
The thesis first develops an object detection framework for front view camera images in surround vision data set. And with the goal of reducing as much annotated data as possible, various domain adaptation methods are applied to train other camera images based on the pretraining of a baseline model. Relevant data analysis work is performed to reveal useful information in object distribution over all cameras. Regularization techniques involving dropout, weight decay, data augmentation are attempted to lower the complexity of training model. Also, the experiments of ratio reduction are carried o
APA, Harvard, Vancouver, ISO, and other styles
37

Mordan, Taylor. "Conception d'architectures profondes pour l'interprétation de données visuelles." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS270.

Full text
Abstract:
Aujourd’hui, les images sont omniprésentes à travers les smartphones et les réseaux sociaux. Il devient alors nécessaire d’avoir des moyens de traitement automatiques, afin d’analyser et d’interpréter les grandes quantités de données disponibles. Dans cette thèse, nous nous intéressons à la détection d’objets, i.e. au problème d’identification et de localisation de tous les objets présents dans une image. Cela peut être vu comme une première étape vers une interprétation complète des scènes. Nous l’abordons avec des réseaux de neurones profonds à convolutions, sous le paradigme de l’apprentiss
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Kaige. "Deep Learning for Crack-Like Object Detection." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7616.

Full text
Abstract:
Cracks are common defects on surfaces of man-made structures such as pavements, bridges, walls of nuclear power plants, ceilings of tunnels, etc. Timely discovering and repairing of the cracks are of great significance and importance for keeping healthy infrastructures and preventing further damages. Traditionally, the cracking inspection was conducted manually which was labor-intensive, time-consuming and costly. For example, statistics from the Central Intelligence Agency show that the world’s road network length has reached 64,285,009 km, of which the United States has 6,586,610 km. It is a
APA, Harvard, Vancouver, ISO, and other styles
39

Yellapantula, Sudha Ravali. "Synthesizing Realistic Data for Vision Based Drone-to-Drone Detection." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91460.

Full text
Abstract:
In the thesis, we aimed at building a robust UAV(drone) detection algorithm through which, one drone could detect another drone in flight. Though this was a straight forward object detection problem, the biggest challenge we faced for drone detection is the limited amount of drone images for training. To address this issue, we used Generative Adversarial Networks, CycleGAN to be precise, for the generation of realistic looking fake images which were indistinguishable from real data. CycleGAN is a classic example of Image to Image Translation technique, and we this applied in our situation wher
APA, Harvard, Vancouver, ISO, and other styles
40

Matosevic, Antonio. "Batch Active Learning for Deep Object Detection in Videos." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292035.

Full text
Abstract:
Relatively recent progress in object detection can mainly be attributed to the success of deep neural networks. However, training such models requires large amounts of annotated data. This poses a two-fold problem, namely obtaining labelled data is a time-consuming process, and training models on many instances is computationally costly. To this end a common approach is to employ active learning, which amounts to constructing a strategy to interactively query much fewer data points while maximizing the performance. In the context of deep object detection in videos, two new challenges arise. Fi
APA, Harvard, Vancouver, ISO, and other styles
41

Ibrahim, Ahmed Sobhy Elnady. "End-To-End Text Detection Using Deep Learning." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/81277.

Full text
Abstract:
Text detection in the wild is the problem of locating text in images of everyday scenes. It is a challenging problem due to the complexity of everyday scenes. This problem possesses a great importance for many trending applications, such as self-driving cars. Previous research in text detection has been dominated by multi-stage sequential approaches which suffer from many limitations including error propagation from one stage to the next. Another line of work is the use of deep learning techniques. Some of the deep methods used for text detection are box detection models and fully convolutio
APA, Harvard, Vancouver, ISO, and other styles
42

Rahman, Quazi Marufur. "Performance monitoring of deep learning vision systems during deployment." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/229733/1/Quazi%20Marufur_Rahman_Thesis.pdf.

Full text
Abstract:
This thesis investigates how to monitor the performance of deep learning vision systems in mobile robots. It conducts state-of-the-art research to validate the real-time performance of mobile robots such as self-driving cars. This research is significant for deploying visual sensor-dependent autonomous vehicles in our daily lives. This knowledge will alert a mobile robot about its performance degradation to take preventive measures to reduce the risk of hazardous consequences for the robot, its surroundings and any person involved.
APA, Harvard, Vancouver, ISO, and other styles
43

Capellier, Édouard. "Application of machine learning techniques for evidential 3D perception, in the context of autonomous driving." Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2534.

Full text
Abstract:
L’apprentissage machine a révolutionné la manière dont les problèmes de perception sont, actuellement, traités. En effet, la plupart des approches à l’état de l’art, dans de nombreux domaines de la vision par ordinateur, se reposent sur des réseaux de neurones profonds. Au moment de déployer, d’évaluer, et de fusionner de telles approches au sein de véhicules autonomes, la question de la représentation des connaissances extraites par ces approches se pose. Dans le cadre de ces travaux de thèse, effectués au sein de Renault SAS, nous avons supposé qu’une représentation crédibiliste permettait d
APA, Harvard, Vancouver, ISO, and other styles
44

Aytar, Yusuf. "Transfer learning for object category detection." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c9e18ff9-df43-4f67-b8ac-28c3fdfa584b.

Full text
Abstract:
Object category detection, the task of determining if one or more instances of a category are present in an image with their corresponding locations, is one of the fundamental problems of computer vision. The task is very challenging because of the large variations in imaged object appearance, particularly due to the changes in viewpoint, illumination and intra-class variance. Although successful solutions exist for learning object category detectors, they require massive amounts of training data. Transfer learning builds upon previously acquired knowledge and thus reduces training requirement
APA, Harvard, Vancouver, ISO, and other styles
45

Moniruzzaman, Md. "Seagrass detection using deep learning." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2019. https://ro.ecu.edu.au/theses/2261.

Full text
Abstract:
Seagrasses play an essential role in the marine ecosystem by providing foods, nutrients, and habitat to the marine lives. They work as marine bioindicators by reflecting the health condition of aquatic environments. Seagrasses also act as a significant atmospheric carbon sink that mitigates global warming and rapid climate changes. Considering the importance, it is critical to monitor seagrasses across the coastlines which includes detection, mapping, percentage cover calculation, and health estimation. Remote sensing-based aerial and spectral images, acoustic images, underwater two-dimensiona
APA, Harvard, Vancouver, ISO, and other styles
46

Runow, Björn. "Deep Learning for Point Detection in Images." Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166644.

Full text
Abstract:
The main result of this thesis is a deep learning model named BearNet, which can be trained to detect an arbitrary amount of objects as a set of points. The model is trained using the Weighted Hausdorff distance as loss function. BearNet has been applied and tested on two problems from the industry. These are: From an intensity image, detect two pocket points of an EU-pallet which an autonomous forklift could utilize when determining where to insert its forks. From a depth image, detect the start, bend and end points of a straw attached to a juice package, in order to help determine if the str
APA, Harvard, Vancouver, ISO, and other styles
47

Öhman, Wilhelm. "Data augmentation using military simulators in deep learning object detection applications." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264917.

Full text
Abstract:
While deep learning solutions have made great progress in recent years, the requirement of large labeled datasets still limit their practical use in certain areas. This problem is especially acute for solutions in domains where even unlabeled data is a limited resource, such as the military domain. Synthetic data, or artificially generated data, has recently attracted attention as a potential solution for this problem. This thesis explores the possibility of using synthetic data in order to improve the performance of a neural network aimed at detecting and localizing firearms in images. To gen
APA, Harvard, Vancouver, ISO, and other styles
48

Estgren, Martin. "Bone Fragment Segmentation Using Deep Interactive Object Selection." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157668.

Full text
Abstract:
In recent years semantic segmentation models utilizing Convolutional Neural Networks (CNN) have seen significant success for multiple different segmentation problems. Models such as U-Net have produced promising results within the medical field for both regular 2D and volumetric imaging, rivalling some of the best classical segmentation methods. In this thesis we examined the possibility of using a convolutional neural network-based model to perform segmentation of discrete bone fragments in CT-volumes with segmentation-hints provided by a user. We additionally examined different classical seg
APA, Harvard, Vancouver, ISO, and other styles
49

Case, Isaac. "Automatic object detection and tracking in video /." Online version of thesis, 2010. http://hdl.handle.net/1850/12332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cogswell, Michael Andrew. "Understanding Representations and Reducing their Redundancy in Deep Networks." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78167.

Full text
Abstract:
Neural networks in their modern deep learning incarnation have achieved state of the art performance on a wide variety of tasks and domains. A core intuition behind these methods is that they learn layers of features which interpolate between two domains in a series of related parts. The first part of this thesis introduces the building blocks of neural networks for computer vision. It starts with linear models then proceeds to deep multilayer perceptrons and convolutional neural networks, presenting the core details of each. However, the introduction also focuses on intuition by visualizing c
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!