Academic literature on the topic 'Deep Learning in CI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep Learning in CI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep Learning in CI"
Nagasawa, Toshihiko, Hitoshi Tabuchi, Hiroki Masumoto, et al. "Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes." PeerJ 6 (October 22, 2018): e5696. http://dx.doi.org/10.7717/peerj.5696.
Full textMarzouk, Mohamed, and Mohamed Zaher. "Artificial intelligence exploitation in facility management using deep learning." Construction Innovation 20, no. 4 (2020): 609–24. http://dx.doi.org/10.1108/ci-12-2019-0138.
Full textLei, Ziyue, Xuewen Liao, Zhenzhen Gao, and Ang Li. "CI-NN: A Model-Driven Deep Learning-Based Constructive Interference Precoding Scheme." IEEE Communications Letters 25, no. 6 (2021): 1896–900. http://dx.doi.org/10.1109/lcomm.2021.3060065.
Full textDePaula Oliveira, Lia, Jiayun Lu, Eric Erak, et al. "Comparison of pathologist and deep learning–based prostate cancer grading for prediction of metastatic outcomes in primary prostate cancer." Journal of Clinical Oncology 42, no. 4_suppl (2024): 345. http://dx.doi.org/10.1200/jco.2024.42.4_suppl.345.
Full textVisweswaran, Shyam, Jason B. Colditz, Patrick O’Halloran, et al. "Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study." Journal of Medical Internet Research 22, no. 8 (2020): e17478. http://dx.doi.org/10.2196/17478.
Full textRezk, Eman, Mohamed Eltorki, and Wael El-Dakhakhni. "Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach." JMIR Dermatology 5, no. 3 (2022): e39143. http://dx.doi.org/10.2196/39143.
Full textR.Shankar and D. Sridhar Dr. "A Comprehensive Review on Test Case Prioritization in Continuous Integration Platforms." International Journal of Innovative Science and Research Technology 8, no. 4 (2023): 3223–29. https://doi.org/10.5281/zenodo.8282823.
Full textAliyev, Jamil. "A Conceptual Framework for Adaptive Ci/Cd Converyors Optimization Via Deep Reinforcement Learning." SCIENTIFIC RESEARCH 5, no. 5 (2025): 253–57. https://doi.org/10.36719/2789-6919/45/253-257.
Full textXu, Lei, Junling Gao, Quan Wang, et al. "Computer-Aided Diagnosis Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A Systematic Review and Meta-Analysis." European Thyroid Journal 9, no. 4 (2019): 186–93. http://dx.doi.org/10.1159/000504390.
Full textAmruthalingam, Ludovic, Oliver Buerzle, Philippe Gottfrois, et al. "Quantification of Efflorescences in Pustular Psoriasis Using Deep Learning." Healthcare Informatics Research 28, no. 3 (2022): 222–30. http://dx.doi.org/10.4258/hir.2022.28.3.222.
Full textDissertations / Theses on the topic "Deep Learning in CI"
Dufourq, Emmanuel. "Evolutionary deep learning." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30357.
Full textHe, Fengxiang. "Theoretical Deep Learning." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25674.
Full textFRACCAROLI, MICHELE. "Explainable Deep Learning." Doctoral thesis, Università degli studi di Ferrara, 2023. https://hdl.handle.net/11392/2503729.
Full textHalle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.
Full textGoh, Hanlin. "Learning deep visual representations." Paris 6, 2013. http://www.theses.fr/2013PA066356.
Full textGeirsson, Gunnlaugur. "Deep learning exotic derivatives." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430410.
Full textWülfing, Jan [Verfasser], and Martin [Akademischer Betreuer] Riedmiller. "Stable deep reinforcement learning." Freiburg : Universität, 2019. http://d-nb.info/1204826188/34.
Full textWhite, Martin. "Deep Learning Software Repositories." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639667.
Full textSun, Haozhe. "Modularity in deep learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG090.
Full textArnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.
Full textBooks on the topic "Deep Learning in CI"
Saefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.
Full textBishop, Christopher M., and Hugh Bishop. Deep Learning. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45468-4.
Full textKruse, René-Marcel, Benjamin Säfken, Alexander Silbersdorff, and Christoph Weisser, eds. Learning Deep Textwork. Göttingen University Press, 2021. http://dx.doi.org/10.17875/gup2021-1608.
Full textRodriguez, Andres. Deep Learning Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8.
Full textFergus, Paul, and Carl Chalmers. Applied Deep Learning. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04420-5.
Full textCalin, Ovidiu. Deep Learning Architectures. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.
Full textMatsushita, Kayo, ed. Deep Active Learning. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.
Full textMichelucci, Umberto. Applied Deep Learning. Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.
Full textMoons, Bert, Daniel Bankman, and Marian Verhelst. Embedded Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99223-5.
Full textBook chapters on the topic "Deep Learning in CI"
Sharif, Muddsair, Charitha Buddhika Heendeniya, and Gero Lückemeyer. "ARaaS: Context-Aware Optimal Charging Distribution Using Deep Reinforcement Learning." In iCity. Transformative Research for the Livable, Intelligent, and Sustainable City. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92096-8_12.
Full textKhouani, Amin, and Ihsane Mekki. "A Device-Agnostic Deep Learning Approach for Predicting Ci-DME Onset Using UWF-CFP Images." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-86651-7_3.
Full textRudy, Kathryn M. "Chapter 3." In Touching Parchment: How Medieval Users Rubbed, Handled, and Kissed Their Manuscripts. Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0379.03.
Full textModi, Ritesh. "CI/CD with Terraform." In Deep-Dive Terraform on Azure. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7328-9_7.
Full textBrouwer, Jasperina, and Carlos A. de Matos Fernandes. "Using Stochastic Actor-Oriented Models to Explain Collaboration Intentionality as a Prerequisite for Peer Feedback and Learning in Networks." In The Power of Peer Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29411-2_5.
Full textKim, Kwangjo, Muhamad Erza Aminanto, and Harry Chandra Tanuwidjaja. "Deep Learning." In SpringerBriefs on Cyber Security Systems and Networks. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1444-5_4.
Full textShaules, Joseph. "Deep Learning." In Language, Culture, and the Embodied Mind. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0587-4_5.
Full textDu, Ke-Lin, and M. N. S. Swamy. "Deep Learning." In Neural Networks and Statistical Learning. Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7452-3_24.
Full textTaulli, Tom. "Deep Learning." In Artificial Intelligence Basics. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5028-0_4.
Full textQuinto, Butch. "Deep Learning." In Next-Generation Machine Learning with Spark. Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5669-5_7.
Full textConference papers on the topic "Deep Learning in CI"
Phosit, Salisa, Sawarod Kongsamlit, and Kitsuchart Pasupa. "Detecting Cyberbullying in Thai Memes: A Multimodal Approach Using Deep Learning." In 2025 IEEE Symposium on Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe). IEEE, 2025. https://doi.org/10.1109/ci-nlpsome64976.2025.10970667.
Full textNiveditha, J., S. Supreeth, and Kirankumari Patil. "Renal Cell Carcinoma Classification: Deep Learning with MLflow, DVC, and AWS CI/CD Deployment." In 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2024. https://doi.org/10.1109/iceca63461.2024.10800992.
Full textDhanumjaya, Mora Venkata, Akhilesh Kocherla, Jeripiti Rama Krishna, Mylavarapu Sethu, Tripty Singh, and Adhirath Mandal. "Comparative Analysis by Machine Learning of Waste Biodiesels in CI Engine." In 2024 IEEE Recent Advances in Intelligent Computational Systems (RAICS). IEEE, 2024. http://dx.doi.org/10.1109/raics61201.2024.10689952.
Full textBarba-Seara, Oscar, Carolina Cano-Cardona, Martín Molina-Álvarez, and David Díaz-Rodríguez. "Applying Machine Learning to Detect Periodicity in Transactional Banking Data." In 2025 IEEE Symposium on Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe Companion). IEEE, 2025. https://doi.org/10.1109/ci-nlpsomecompanion65206.2025.10977864.
Full textSritharan, Braveenan, Uthayasanker Thayasivam, and Supun Jayaminda Bandara. "SUPERB-EP: Evaluating Encoder Pooling Techniques in Self-Supervised Learning Models for Speech Classification." In 2025 IEEE Symposium on Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe). IEEE, 2025. https://doi.org/10.1109/ci-nlpsome64976.2025.10970770.
Full textAlba, Charles. "ConText Mining: Complementing Topic Models with Few-Shot In-Context Learning to Generate Interpretable Topics." In 2025 IEEE Symposium on Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe Companion). IEEE, 2025. https://doi.org/10.1109/ci-nlpsomecompanion65206.2025.10977890.
Full textVaidya, Nishtha N., Thomas A. Runkler, Thomas Hubauer, Veronika Haderlein-Hoegberg, and Maja Milicic Brandt. "Conceptual In-Context Learning and Chain of Concepts: Solving Complex Conceptual Problems Using Large Language Models." In 2025 IEEE Symposium on Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe). IEEE, 2025. https://doi.org/10.1109/ci-nlpsome64976.2025.10970773.
Full textLee, Chang-Shing, Mei-Hui Wang, Chih-Yu Chen, et al. "Transformer-Based Semantic SBERT Robot with CI Mechanism for Students and Machine Co-Learning." In 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2024. http://dx.doi.org/10.1109/fuzz-ieee60900.2024.10611786.
Full textYao, Jenq-Foung, Yu-Hsiang John Huang, Cheng-Ying Yang, and Min-Shiang Hwang. "Deep Learning Applications." In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10869071.
Full textChen, Larry, Nihal Obeyesekere, Aline Kina, and Lisa Greaney. "Development of a Combined Corrosion and Scale Inhibitor for Subsea Multiphase Oil Field in Brazil." In CONFERENCE 2023. AMPP, 2023. https://doi.org/10.5006/c2023-18810.
Full textReports on the topic "Deep Learning in CI"
Catanach, Thomas, and Jed Duersch. Efficient Generalizable Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1760400.
Full textDell, Melissa. Deep Learning for Economists. National Bureau of Economic Research, 2024. http://dx.doi.org/10.3386/w32768.
Full textGroh, Micah. NOvA Reconstruction using Deep Learning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1462092.
Full textGeiss, Andrew, Joseph Hardin, Sam Silva, William Jr., Adam Varble, and Jiwen Fan. Deep Learning for Ensemble Forecasting. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769692.
Full textHarris, James, Shannon Kinkead, Dylan Fox, and Yang Ho. Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1855019.
Full textDraelos, Timothy John, Nadine E. Miner, Christopher C. Lamb, et al. Neurogenesis Deep Learning: Extending deep networks to accommodate new classes. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1505351.
Full textBalaji, Praveen. Detecting Stellar Streams through Deep Learning. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1637622.
Full textLi, Li. Deep Learning for Hydro-Biogeochemistry Processes. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769693.
Full textEydenberg, Michael, Lisa Batsch-Smith, Charles Bice, et al. Resilience Enhancements through Deep Learning Yields. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1890044.
Full textOskolkov, Nikolay. Deep Learning for the Life Sciences. Instats Inc., 2024. https://doi.org/10.61700/zjxxse1x3u05y1846.
Full text