Journal articles on the topic 'Deep Learning in CI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep Learning in CI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nagasawa, Toshihiko, Hitoshi Tabuchi, Hiroki Masumoto, et al. "Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes." PeerJ 6 (October 22, 2018): e5696. http://dx.doi.org/10.7717/peerj.5696.
Full textMarzouk, Mohamed, and Mohamed Zaher. "Artificial intelligence exploitation in facility management using deep learning." Construction Innovation 20, no. 4 (2020): 609–24. http://dx.doi.org/10.1108/ci-12-2019-0138.
Full textLei, Ziyue, Xuewen Liao, Zhenzhen Gao, and Ang Li. "CI-NN: A Model-Driven Deep Learning-Based Constructive Interference Precoding Scheme." IEEE Communications Letters 25, no. 6 (2021): 1896–900. http://dx.doi.org/10.1109/lcomm.2021.3060065.
Full textDePaula Oliveira, Lia, Jiayun Lu, Eric Erak, et al. "Comparison of pathologist and deep learning–based prostate cancer grading for prediction of metastatic outcomes in primary prostate cancer." Journal of Clinical Oncology 42, no. 4_suppl (2024): 345. http://dx.doi.org/10.1200/jco.2024.42.4_suppl.345.
Full textVisweswaran, Shyam, Jason B. Colditz, Patrick O’Halloran, et al. "Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study." Journal of Medical Internet Research 22, no. 8 (2020): e17478. http://dx.doi.org/10.2196/17478.
Full textRezk, Eman, Mohamed Eltorki, and Wael El-Dakhakhni. "Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach." JMIR Dermatology 5, no. 3 (2022): e39143. http://dx.doi.org/10.2196/39143.
Full textR.Shankar and D. Sridhar Dr. "A Comprehensive Review on Test Case Prioritization in Continuous Integration Platforms." International Journal of Innovative Science and Research Technology 8, no. 4 (2023): 3223–29. https://doi.org/10.5281/zenodo.8282823.
Full textAliyev, Jamil. "A Conceptual Framework for Adaptive Ci/Cd Converyors Optimization Via Deep Reinforcement Learning." SCIENTIFIC RESEARCH 5, no. 5 (2025): 253–57. https://doi.org/10.36719/2789-6919/45/253-257.
Full textXu, Lei, Junling Gao, Quan Wang, et al. "Computer-Aided Diagnosis Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A Systematic Review and Meta-Analysis." European Thyroid Journal 9, no. 4 (2019): 186–93. http://dx.doi.org/10.1159/000504390.
Full textAmruthalingam, Ludovic, Oliver Buerzle, Philippe Gottfrois, et al. "Quantification of Efflorescences in Pustular Psoriasis Using Deep Learning." Healthcare Informatics Research 28, no. 3 (2022): 222–30. http://dx.doi.org/10.4258/hir.2022.28.3.222.
Full textGlaser, Dylan, Ahmad K. AlMekkawi, James P. Caruso, et al. "Deep learning for automated spinopelvic parameter measurement from radiographs: a meta-analysis." Artificial Intelligence Surgery 5, no. 1 (2025): 1–15. https://doi.org/10.20517/ais.2024.36.
Full textXiang, Fei, Xiang He, Xingyu Liu, et al. "Development and Validation of a Nomogram for Preoperative Prediction of Early Recurrence after Upfront Surgery in Pancreatic Ductal Adenocarcinoma by Integrating Deep Learning and Radiological Variables." Cancers 15, no. 14 (2023): 3543. http://dx.doi.org/10.3390/cancers15143543.
Full textSugibayashi, Takahiro, Shannon L. Walston, Toshimasa Matsumoto, Yasuhito Mitsuyama, Yukio Miki, and Daiju Ueda. "Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis." European Respiratory Review 32, no. 168 (2023): 220259. http://dx.doi.org/10.1183/16000617.0259-2022.
Full textWang, Yingxu, Bernard Widrow, Lotfi A. Zadeh, et al. "Cognitive Intelligence." International Journal of Cognitive Informatics and Natural Intelligence 10, no. 4 (2016): 1–20. http://dx.doi.org/10.4018/ijcini.2016100101.
Full textYe, Xiao-Wei, Tao Jin, and Peng-Yu Chen. "Structural crack detection using deep learning–based fully convolutional networks." Advances in Structural Engineering 22, no. 16 (2019): 3412–19. http://dx.doi.org/10.1177/1369433219836292.
Full textRaimondo, Diego, Antonio Raffone, Anna Chiara Aru, et al. "Application of Deep Learning Model in the Sonographic Diagnosis of Uterine Adenomyosis." International Journal of Environmental Research and Public Health 20, no. 3 (2023): 1724. http://dx.doi.org/10.3390/ijerph20031724.
Full textLee, Jinho, Jin-Soo Kim, Haeng Jin Lee, et al. "Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier." British Journal of Ophthalmology 104, no. 12 (2020): 1717–23. http://dx.doi.org/10.1136/bjophthalmol-2019-314330.
Full textC N, Darshan, and Prof Srinivas V. "Journal of Thoracic Oncology Using Deep Learning." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 07 (2025): 1–9. https://doi.org/10.55041/ijsrem51454.
Full textZuo, Xiaohu, Jianfeng Liu, Ming Hu, Yong He, and Li Hong. "A Deep Learning Model for Cervical Optical Coherence Tomography Image Classification." Diagnostics 14, no. 18 (2024): 2009. http://dx.doi.org/10.3390/diagnostics14182009.
Full textShen, Ming-Hung, Chi-Cheng Huang, Yu-Tsung Chen, et al. "Deep Learning Empowers Endoscopic Detection and Polyps Classification: A Multiple-Hospital Study." Diagnostics 13, no. 8 (2023): 1473. http://dx.doi.org/10.3390/diagnostics13081473.
Full textKhurshid, Shaan, Samuel Friedman, Christopher Reeder, et al. "ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation." Circulation 145, no. 2 (2022): 122–33. http://dx.doi.org/10.1161/circulationaha.121.057480.
Full textSaad, Maliazurina B., Lingzhi Hong, Muhammad Aminu, et al. "Deep learning signature from chest CT and association with immunotherapy outcomes in EGFR/ALK-negative NSCLC." Journal of Clinical Oncology 40, no. 16_suppl (2022): 9061. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.9061.
Full textWang, Tianyi, Ruiyuan Chen, Ning Fan, et al. "Machine Learning and Deep Learning for Diagnosis of Lumbar Spinal Stenosis: Systematic Review and Meta-Analysis." Journal of Medical Internet Research 26 (December 23, 2024): e54676. https://doi.org/10.2196/54676.
Full textHong, Seung Wook, Juntae Park, Junnam Lee, et al. "Non-invasive colorectal cancer detection using multimodal deep learning ensemble classifier." Journal of Clinical Oncology 42, no. 16_suppl (2024): 3066. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.3066.
Full textGracioso, Luciana De Souza. "Indexação automática de imagens na web: tendências e desafios no contexto Deep Learning." Revista Ibero-Americana de Ciência da Informação 11, no. 2 (2018): 541–61. http://dx.doi.org/10.26512/rici.v11.n2.2018.8342.
Full textMi, Junjie, Xiaofang Han, Rong Wang, Ruijun Ma, and Danyu Zhao. "Diagnostic Accuracy of Wireless Capsule Endoscopy in Polyp Recognition Using Deep Learning: A Meta-Analysis." International Journal of Clinical Practice 2022 (March 19, 2022): 1–10. http://dx.doi.org/10.1155/2022/9338139.
Full textValiuškaitė, Viktorija, Vidas Raudonis, Rytis Maskeliūnas, Robertas Damaševičius, and Tomas Krilavičius. "Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination." Sensors 21, no. 1 (2020): 72. http://dx.doi.org/10.3390/s21010072.
Full textWeng, Wei-Hung, Sebastien Baur, Mayank Daswani, et al. "Predicting cardiovascular disease risk using photoplethysmography and deep learning." PLOS Global Public Health 4, no. 6 (2024): e0003204. http://dx.doi.org/10.1371/journal.pgph.0003204.
Full textValliani, Aly A., Faris F. Gulamali, Young Joon Kwon, et al. "Deploying deep learning models on unseen medical imaging using adversarial domain adaptation." PLOS ONE 17, no. 10 (2022): e0273262. http://dx.doi.org/10.1371/journal.pone.0273262.
Full textBrant, Arthur, Preeti Singh, Xiang Yin, et al. "Performance of a Deep Learning Diabetic Retinopathy Algorithm in India." JAMA Network Open 8, no. 3 (2025): e250984. https://doi.org/10.1001/jamanetworkopen.2025.0984.
Full textErsöz, Betül, Ali Öter, Seref Sagiroglu, Erkan Akkaş, and Mustafa Yapar. "Deep learning based ResNet integrated U-Net approach for segmentation and classification of breast cancer images." Computers and Informatics 5, no. 1 (2025). https://doi.org/10.62189/ci.1604037.
Full textGuimarães, Pedro, Andreas Keller, Tobias Fehlmann, Frank Lammert, and Markus Casper. "Deep learning-based detection of eosinophilic esophagitis." Endoscopy, May 31, 2021. http://dx.doi.org/10.1055/a-1520-8116.
Full textNieri, Michele, Lapo Serni, Tommaso Clauser, Costanza Paoletti, and Lorenzo Franchi. "Diagnosis of Oral Cancer With Deep Learning. A Comparative Test Accuracy Systematic Review." Oral Diseases, March 31, 2025. https://doi.org/10.1111/odi.15330.
Full textElghaish, Faris, Sandra T. Matarneh, Saeed Talebi, Soliman Abu-Samra, Ghazal Salimi, and Christopher Rausch. "Deep learning for detecting distresses in buildings and pavements: a critical gap analysis." Construction Innovation, November 9, 2021. http://dx.doi.org/10.1108/ci-09-2021-0171.
Full textJi, Qingqing, Guohua Zhou, and Xiangxiang Sun. "Deep learning signature to predict postoperative anxiety in patients receiving lung cancer surgery." Frontiers in Surgery 12 (March 24, 2025). https://doi.org/10.3389/fsurg.2025.1573370.
Full textLi, Pinhao, Yan Wang, Hui Li, et al. "Prediction of postoperative infection in elderly using deep learning-based analysis: an observational cohort study." Aging Clinical and Experimental Research, January 4, 2023. http://dx.doi.org/10.1007/s40520-022-02325-3.
Full textElghaish, Faris, Sandra T. Matarneh, and Mohammad Alhusban. "The application of “deep learning” in construction site management: scientometric, thematic and critical analysis." Construction Innovation, December 28, 2021. http://dx.doi.org/10.1108/ci-10-2021-0195.
Full textChen, Xiehui, Wenqin Guo, Lingyue Zhao, et al. "Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms." Frontiers in Cardiovascular Medicine 8 (August 24, 2021). http://dx.doi.org/10.3389/fcvm.2021.654515.
Full textVrudhula, Amey, Milos Vukadinovic, Christiane Haeffele, et al. "Automated Deep Learning Phenotyping of Tricuspid Regurgitation in Echocardiography." JAMA Cardiology, April 16, 2025. https://doi.org/10.1001/jamacardio.2025.0498.
Full textAraki, Makoto, Sangjoon Park, Akihiro Nakajima, Hang Lee, Jong Chul Ye, and Ik-Kyung Jang. "Diagnosis of coronary layered plaque by deep learning." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-29293-6.
Full textAhn, Sangil, Yoosoo Chang, Ria Kwon, et al. "Mammography-Based Deep Learning Model for Coronary Artery Calcification." European Heart Journal - Cardiovascular Imaging, November 21, 2023. http://dx.doi.org/10.1093/ehjci/jead307.
Full textLehman, Constance D., Sarah Mercaldo, Leslie R. Lamb, et al. "Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening." JNCI: Journal of the National Cancer Institute, July 25, 2022. http://dx.doi.org/10.1093/jnci/djac142.
Full textZhang, Wen-fei, Dong-hong Li, Qi-jie Wei, et al. "The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy." Frontiers in Medicine 9 (May 16, 2022). http://dx.doi.org/10.3389/fmed.2022.839088.
Full textMahamivanan, Hadi, Navid Ghassemi, Mohammad Tayarani Darbandi, et al. "Material recognition for construction quality monitoring using deep learning methods." Construction Innovation, July 12, 2023. http://dx.doi.org/10.1108/ci-04-2022-0074.
Full textXie, He, Zhongwen Li, Chengchao Wu, et al. "Deep learning for detecting visually impaired cataracts using fundus images." Frontiers in Cell and Developmental Biology 11 (July 28, 2023). http://dx.doi.org/10.3389/fcell.2023.1197239.
Full textPark, S., M. Arakai, A. Nakajima, H. Lee, J. C. Ye, and I. K. Jang. "Diagnosis of coronary layered plaque by deep learning." European Heart Journal 43, Supplement_2 (2022). http://dx.doi.org/10.1093/eurheartj/ehac544.338.
Full textHolste, Gregory, Evangelos K. Oikonomou, Bobak J. Mortazavi, Zhangyang Wang, and Rohan Khera. "Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning." Communications Medicine 4, no. 1 (2024). http://dx.doi.org/10.1038/s43856-024-00538-3.
Full textZhang, Zheming, Qi Gao, Dong Fang, et al. "Effective automatic classification methods via deep learning for myopic maculopathy." Frontiers in Medicine 11 (November 13, 2024). http://dx.doi.org/10.3389/fmed.2024.1492808.
Full textLi, Ning, Zhe Wu, Chao Jiang, et al. "An automatic FreshRib fracture detection and positioning system using deep learning." British Journal of Radiology, March 27, 2023. http://dx.doi.org/10.1259/bjr.20221006.
Full textTan, Yuhe, Yunxi Ma, Suyun Rao, and Xufang Sun. "Performance of deep learning for detection of chronic kidney disease from retinal fundus photographs: A systematic review and meta-analysis." European Journal of Ophthalmology, September 6, 2023. http://dx.doi.org/10.1177/11206721231199848.
Full text