Academic literature on the topic 'Deep learning neural network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep learning neural network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep learning neural network"
Banzi, Jamal, Isack Bulugu, and Zhongfu Ye. "Deep Predictive Neural Network: Unsupervised Learning for Hand Pose Estimation." International Journal of Machine Learning and Computing 9, no. 4 (August 2019): 432–39. http://dx.doi.org/10.18178/ijmlc.2019.9.4.822.
Full textNizami Huseyn, Elcin. "APPLICATION OF DEEP LEARNING TECHNOLOGY IN DISEASE DIAGNOSIS." NATURE AND SCIENCE 04, no. 05 (December 28, 2020): 4–11. http://dx.doi.org/10.36719/2707-1146/05/4-11.
Full textBashar, Dr Abul. "SURVEY ON EVOLVING DEEP LEARNING NEURAL NETWORK ARCHITECTURES." December 2019 2019, no. 2 (December 14, 2019): 73–82. http://dx.doi.org/10.36548/jaicn.2019.2.003.
Full textBunrit, Supaporn, Thuttaphol Inkian, Nittaya Kerdprasop, and Kittisak Kerdprasop. "Text-Independent Speaker Identification Using Deep Learning Model of Convolution Neural Network." International Journal of Machine Learning and Computing 9, no. 2 (April 2019): 143–48. http://dx.doi.org/10.18178/ijmlc.2019.9.2.778.
Full textBodyansky, E. V., and Т. Е. Antonenko. "Deep neo-fuzzy neural network and its learning." Bionics of Intelligence 1, no. 92 (June 2, 2019): 3–8. http://dx.doi.org/10.30837/bi.2019.1(92).01.
Full textCHOI, Young-Seok. "Neuromorphic Learning: Deep Spiking Neural Network." Physics and High Technology 28, no. 4 (April 30, 2019): 16–21. http://dx.doi.org/10.3938/phit.28.014.
Full textPatel, Hima, Amit Thakkar, Mrudang Pandya, and Kamlesh Makwana. "Neural network with deep learning architectures." Journal of Information and Optimization Sciences 39, no. 1 (November 10, 2017): 31–38. http://dx.doi.org/10.1080/02522667.2017.1372908.
Full textKriegeskorte, Nikolaus, and Tal Golan. "Neural network models and deep learning." Current Biology 29, no. 7 (April 2019): R231—R236. http://dx.doi.org/10.1016/j.cub.2019.02.034.
Full textMuşat, Bogdan, and Răzvan Andonie. "Semiotic Aggregation in Deep Learning." Entropy 22, no. 12 (December 3, 2020): 1365. http://dx.doi.org/10.3390/e22121365.
Full textV.M., Sineglazov, and Chumachenko O.I. "Structural-parametric synthesis of deep learning neural networks." Artificial Intelligence 25, no. 4 (December 25, 2020): 42–51. http://dx.doi.org/10.15407/jai2020.04.042.
Full textDissertations / Theses on the topic "Deep learning neural network"
Sarpangala, Kishan. "Semantic Segmentation Using Deep Learning Neural Architectures." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin157106185092304.
Full textRedkar, Shrutika. "Deep Learning Binary Neural Network on an FPGA." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/407.
Full textAbrishami, Hedayat. "Deep Learning Based Electrocardiogram Delineation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563525992210273.
Full textWang, Xutao. "Chinese Text Classification Based On Deep Learning." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35322.
Full textKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Full textSCADA systems are more and more targeted by cyber-attacks because of many vulnerabilities inhardware, software, protocols and the communication stack. Those systems nowadays use standard hardware, software, operating systems and protocols. Furthermore, SCADA systems which used to be air-gaped are now interconnected to corporate networks and to the Internet, widening the attack surface.In this thesis, we are using a deep learning approach to propose an efficient hybrid deep neural network for anomaly detection in SCADA systems. The salient features of SCADA data are automatically and unsupervisingly learnt, and then fed to a supervised classifier in order to dertermine if those data are normal or abnormal, i.e if there is a cyber-attack or not. Afterwards, as a response to the challenge caused by high training time of deep learning models, we proposed a distributed approach of our anomaly detection system in order lo lessen the training time of our model
Lopes, André Teixeira. "Facial expression recognition using deep learning - convolutional neural network." Universidade Federal do Espírito Santo, 2016. http://repositorio.ufes.br/handle/10/4301.
Full textCAPES
O reconhecimento de expressões faciais tem sido uma área de pesquisa ativa nos últimos dez anos, com uma área de aplicação em crescimento como animação de personagens e neuro-marketing. O reconhecimento de uma expressão facial não é um problema fácil para métodos de aprendizagem de máquina, dado que pessoas diferentes podem variar na forma com que mostram suas expressões. Até uma imagem da mesma pessoa em uma expressão pode variar em brilho, cor de fundo e posição. Portanto, reconhecer expressões faciais ainda é um problema desafiador em visão computacional. Para resolver esses problemas, nesse trabalho, nós propomos um sistema de reconhecimento de expressões faciais que usa redes neurais de convolução. Geração sintética de dados e diferentes operações de pré-processamento foram estudadas em conjunto com várias arquiteturas de redes neurais de convolução. A geração sintética de dados e as etapas de pré-processamento foram usadas para ajudar a rede na seleção de características. Experimentos foram executados em três bancos de dados largamente utilizados (CohnKanade, JAFFE, e BU3DFE) e foram feitas validações entre bancos de dados(i.e., treinar em um banco de dados e testar em outro). A abordagem proposta mostrou ser muito efetiva, melhorando os resultados do estado-da-arte na literatura.
Facial expression recognition has been an active research area in the past ten years, with growing application areas such avatar animation, neuromarketing and sociable robots. The recognition of facial expressions is not an easy problem for machine learning methods, since people can vary signi cantly in the way that they show their expressions. Even images of the same person in one expression can vary in brightness, background and position. Hence, facial expression recognition is still a challenging problem. To address these problems, in this work we propose a facial expression recognition system that uses Convolutional Neural Networks. Data augmentation and di erent preprocessing steps were studied together with various Convolutional Neural Networks architectures. The data augmentation and pre-processing steps were used to help the network on the feature selection. Experiments were carried out with three largely used databases (Cohn-Kanade, JAFFE, and BU3DFE) and cross-database validations (i.e. training in one database and test in another) were also performed. The proposed approach has shown to be very e ective, improving the state-of-the-art results in the literature and allowing real time facial expression recognition with standard PC computers.
Suárez-Varela, Macià José Rafael. "Enabling knowledge-defined networks : deep reinforcement learning, graph neural networks and network analytics." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669212.
Full textLa evolución del campo del Aprendizaje Maquina (ML) en la última década ha dado lugar a una nueva era de la Inteligencia Artificial (AI). En concreto, algunos avances en el campo del Aprendizaje Profundo (DL) han permitido desarrollar nuevas herramientas de modelado y optimización con múltiples aplicaciones en campos como el procesado de lenguaje natural, o la visión artificial. En este contexto, el paradigma de Redes Definidas por Conocimiento (KDN) destaca la falta de adopción de técnicas de AI en redes y, como resultado, propone una nueva arquitectura basada en Redes Definidas por Software (SDN) y en técnicas modernas de análisis de red para facilitar el despliegue de soluciones basadas en ML. Esta tesis pretende representar un avance en la realización de redes basadas en KDN. En particular, investiga la aplicación de técnicas de AI para operar las redes de forma más eficiente y automática. Para ello, identificamos dos componentes en el contexto de KDN cuyo desarrollo puede resultar esencial para conseguir redes operadas autónomamente en el futuro: (i) el módulo de control automático y (ii) la plataforma de análisis de red. La primera parte de esta tesis aborda la construcción del módulo de control automático. En primer lugar, se explora el uso de algoritmos de Aprendizaje Profundo por Refuerzo (DRL) para optimizar el encaminamiento de tráfico en redes. DRL ha demostrado una capacidad sobresaliente para resolver problemas de toma de decisiones en otros campos. Sin embargo, los primeros trabajos que han aplicado DRL a la optimización del encaminamiento en redes no han conseguido rendimientos satisfactorios. Frente a dichas soluciones previas, proponemos una representación más elaborada de la red que facilita a los agentes DRL aprender estrategias de encaminamiento eficientes. Nuestra evaluación muestra que cuando los agentes DRL utilizan la representación propuesta logran mayor rendimiento y aprenden más rápido cómo encaminar el tráfico en un caso práctico en Redes de Transporte Ópticas (OTN). En segundo lugar, se presentan las bases sobre la utilización de Redes Neuronales de Grafos (GNN) para construir herramientas de optimización de red. Las GNN constituyen una nueva familia de modelos de DL específicamente diseñados para operar y generalizar sobre grafos de tamaño y estructura variables. Esta tesis destaca la idoneidad de las GNN para modelar las relaciones entre diferentes elementos de red que se representan intrínsecamente como grafos (p. ej., topología, encaminamiento). En particular, utilizamos una arquitectura GNN específicamente diseñada para optimizar el encaminamiento de tráfico que, a diferencia de las propuestas anteriores basadas en ML, es capaz de generalizar correctamente sobre topologías, configuraciones de encaminamiento y tráfico nunca vistos durante el entrenamiento La segunda parte de esta tesis investiga el diseño de herramientas de análisis de red eficientes en el contexto de KDN. El análisis de red resulta esencial para proporcionar al plano de control una visión completa y actualizada del estado de la red. No obstante, esto no es una tarea trivial considerando que esta información representa una cantidad masiva de datos en despliegues de red reales. Esta parte de la tesis analiza los principales aspectos a considerar a la hora de medir y clasificar el tráfico en SDN (p. ej., escalabilidad, exactitud, coste). Como resultado, se propone una solución práctica que genera informes de medidas de tráfico a nivel de flujo similares a los de NetFlow/IPFIX en redes tradicionales. El sistema propuesto utiliza sólo funciones soportadas por OpenFlow, actualmente uno de los estándares más consolidados en SDN, y permite mantener de forma eficiente estadísticas de tráfico en conmutadores con características básicas y enviarlas de forma asíncrona hacia el plano de control. Asimismo, un sistema que combina ML e Inspección Profunda de Paquetes (DPI) identifica las aplicaciones que generan cada flujo de tráfico.
Squadrani, Lorenzo. "Deep neural networks and thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textChen, Tairui. "Going Deeper with Convolutional Neural Network for Intelligent Transportation." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/144.
Full textParakkal, Sreenivasan Akshai. "Deep learning prediction of Quantmap clusters." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445909.
Full textBooks on the topic "Deep learning neural network"
Aggarwal, Charu C. Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94463-0.
Full textTetko, Igor V., Věra Kůrková, Pavel Karpov, and Fabian Theis, eds. Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30484-3.
Full textIba, Hitoshi. Evolutionary Approach to Machine Learning and Deep Neural Networks. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0200-8.
Full textLu, Le, Yefeng Zheng, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Image Computing. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42999-1.
Full textLu, Le, Xiaosong Wang, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13969-8.
Full textThrun, Sebastian. Explanation-Based Neural Network Learning. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1381-6.
Full textGallant, Stephen I. Neural network learning and expert systems. Cambridge, Mass: MIT Press, 1993.
Find full textKim, Kwangjo, Muhamad Erza Aminanto, and Harry Chandra Tanuwidjaja. Network Intrusion Detection using Deep Learning. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1444-5.
Full textThrun, Sebastian. Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Boston, MA: Springer US, 1996.
Find full textThrun, Sebastian. Explanation-based neural network learning: A lifelong learning approach. Boston: Kluwer Academic Publishers, 1996.
Find full textBook chapters on the topic "Deep learning neural network"
Kim, Phil. "Neural Network." In MATLAB Deep Learning, 19–51. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6_2.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. "Convolutional Neural Network." In Deep Learning Pipeline, 367–413. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5349-6_11.
Full textKim, Phil. "Convolutional Neural Network." In MATLAB Deep Learning, 121–47. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6_6.
Full textKim, Phil. "Neural Network and Classification." In MATLAB Deep Learning, 81–102. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6_4.
Full textLee, Taesam, Vijay P. Singh, and Kyung Hwa Cho. "Neural Network." In Deep Learning for Hydrometeorology and Environmental Science, 27–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64777-3_4.
Full textKim, Phil. "Training of Multi-Layer Neural Network." In MATLAB Deep Learning, 53–80. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6_3.
Full textCalin, Ovidiu. "Neural Networks." In Deep Learning Architectures, 167–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3_6.
Full textTao, Sean. "Deep Neural Network Ensembles." In Machine Learning, Optimization, and Data Science, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_1.
Full textSilaparasetty, Vinita. "Neural Network Collection." In Deep Learning Projects Using TensorFlow 2, 249–347. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5802-6_9.
Full textVieira, Armando, and Bernardete Ribeiro. "Deep Neural Network Models." In Introduction to Deep Learning Business Applications for Developers, 37–73. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3453-2_3.
Full textConference papers on the topic "Deep learning neural network"
Zhang, Zhen, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, and Can Wang. "ANRL: Attributed Network Representation Learning via Deep Neural Networks." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/438.
Full textHuang, Wenhao, Haikun Hong, Guojie Song, and Kunqing Xie. "Deep process neural network for temporal deep learning." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889533.
Full textMohapatra, Saumendra Kumar, Geetika Srivastava, and Mihir Narayan Mohanty. "Arrhythmia Classification Using Deep Neural Network." In 2019 International Conference on Applied Machine Learning (ICAML). IEEE, 2019. http://dx.doi.org/10.1109/icaml48257.2019.00062.
Full textChen, Huiyuan, and Jing Li. "Learning Data-Driven Drug-Target-Disease Interaction via Neural Tensor Network." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/477.
Full textZhu, Xiaotian, Wengang Zhou, and Houqiang Li. "Improving Deep Neural Network Sparsity through Decorrelation Regularization." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/453.
Full textZhong, Rui, and Taro Tezuka. "Parametric Learning of Deep Convolutional Neural Network." In the 19th International Database Engineering & Applications Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2790755.2790791.
Full textNarodytska, Nina. "Formal Analysis of Deep Binarized Neural Networks." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/811.
Full textSulo, Idil, Seref Recep Keskin, Gulustan Dogan, and Theodore Brown. "Energy Efficient Smart Buildings: LSTM Neural Networks for Time Series Prediction." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00012.
Full textQin, Haotong. "Hardware-friendly Deep Learning by Network Quantization and Binarization." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/687.
Full textZhang, Yicheng, Jipeng Gao, and Haolin Zhou. "Breeds Classification with Deep Convolutional Neural Network." In ICMLC 2020: 2020 12th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3383972.3383975.
Full textReports on the topic "Deep learning neural network"
Vassilev, Apostol. BowTie – A deep learning feedforward neural network for sentiment analysis. Gaithersburg, MD: National Institute of Standards and Technology, April 2019. http://dx.doi.org/10.6028/nist.cswp.04222019.
Full textPettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41034.
Full textIdakwo, Gabriel, Sundar Thangapandian, Joseph Luttrell, Zhaoxian Zhou, Chaoyang Zhang, and Ping Gong. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification : a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41302.
Full textMatteucci, Matteo. ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada456062.
Full textMu, Ruihui. A Novel Recommendation Model Based on Deep Neural Network. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.05.11.
Full textThompson, Richard F. A Biological Neural Network Analysis of Learning and Memory. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada241837.
Full textRocco, Dominick Rosario. Muon Neutrino Disappearance in NOvA with a Deep Convolutional Neural Network Classifier. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1294514.
Full textLei, Yun, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. A Novel Scheme for Speaker Recognition Using a Phonetically-Aware Deep Neural Network. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada613971.
Full textYu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Full textCooper, Alexis, Xin Zhou, Scott Heidbrink, and Daniel Dunlavy. Using Neural Architecture Search for Improving Software Flaw Detection in Multimodal Deep Learning Models. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668457.
Full text