Academic literature on the topic 'Deep Learning techniques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep Learning techniques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep Learning techniques"
Firdaus, Naina, and Madhuvan Dixit. "Deep Learning Techniques, Applications and Challenges: An Assessment." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 1710–14. http://dx.doi.org/10.31142/ijtsrd14437.
Full textM, Leo Francis, Darshan K. S, Ankith M. C, and Divakara V. "CombiningNLP and Deep Learning Techniques to Generate Captions." International Journal of Research Publication and Reviews 4, no. 5 (June 2023): 4682–91. http://dx.doi.org/10.55248/gengpi.4.523.42704.
Full textAgarwal, Sohit, and Mukesh Kumar Gupta. "Context Aware Image Sentiment Classification using Deep Learning Techniques." Indian Journal Of Science And Technology 15, no. 47 (December 20, 2022): 2619–27. http://dx.doi.org/10.17485/ijst/v15i47.1907.
Full textSravani, L., N. Rama Venkat Sai, K. Noomika, M. Upendra Kumar, and K. V. Adarsh. "Image Enhancement of Underwater Images using Deep Learning Techniques." International Journal of Research Publication and Reviews 4, no. 4 (April 3, 2023): 81–86. http://dx.doi.org/10.55248/gengpi.2023.4.4.34620.
Full textIbrahim, Dr Abdul-Wahab Sami, and Dr Baidaa Abdul khaliq Atya. "Detection of Diseases in Rice Leaf Using Deep Learning and Machine Learning Techniques." Webology 19, no. 1 (January 20, 2022): 1493–503. http://dx.doi.org/10.14704/web/v19i1/web19100.
Full textS., Gayathri, Santhiya S., Nowneesh T., Sanjana Shuruthy K., and Sakthi S. "Deep fake detection using deep learning techniques." Applied and Computational Engineering 2, no. 1 (March 22, 2023): 1010–19. http://dx.doi.org/10.54254/2755-2721/2/20220655.
Full textT., Senthil Kumar. "Systematic Study on Deep Learning Techniques for Prediction of Movies." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 31–38. http://dx.doi.org/10.5373/jardcs/v12sp4/20201463.
Full textNandini, L. Surya, L. Haritha Priya, N. Sruthi, K. S. N. Murthy, M. Ashish Kumar, and N. Lakshmi Devi. "Survey on Aspect Based Sentimental Analysis using Deep Learning Techniques." International Journal of Research Publication and Reviews 4, no. 3 (March 2023): 634–46. http://dx.doi.org/10.55248/gengpi.2023.31886.
Full textHarsha, Sanda Sri. "Prediction of Silica Impurity Using Deep Learning Techniques for Mining Environment." Revista Gestão Inovação e Tecnologias 11, no. 3 (June 30, 2021): 506–17. http://dx.doi.org/10.47059/revistageintec.v11i3.1953.
Full textKibria, Md Golam, and Mehmet Sevkli. "Application of Deep Learning for Credit Card Approval: A Comparison with Two Machine Learning Techniques." International Journal of Machine Learning and Computing 11, no. 4 (August 2021): 286–90. http://dx.doi.org/10.18178/ijmlc.2021.11.4.1049.
Full textDissertations / Theses on the topic "Deep Learning techniques"
Hossain, Md Zakir. "Deep learning techniques for image captioning." Thesis, Hossain, Md. Zakir (2020) Deep learning techniques for image captioning. PhD thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/60782/.
Full textDomeniconi, Federico. "Deep Learning Techniques applied to Photometric Stereo." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20031/.
Full textCruz, Edmanuel. "Robotics semantic localization using deep learning techniques." Doctoral thesis, Universidad de Alicante, 2020. http://hdl.handle.net/10045/109462.
Full textNguyen, Tien Dung. "Multimodal emotion recognition using deep learning techniques." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/180753/1/Tien%20Dung_Nguyen_Thesis.pdf.
Full textSingh, Praveer. "Processing high-resolution images through deep learning techniques." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1172.
Full textIn this thesis, we discuss four different application scenarios that can be broadly grouped under the larger umbrella of Analyzing and Processing high-resolution images using deep learning techniques. The first three chapters encompass processing remote-sensing (RS) images which are captured either from airplanes or satellites from hundreds of kilometers away from the Earth. We start by addressing a challenging problem related to improving the classification of complex aerial scenes through a deep weakly supervised learning paradigm. We showcase as to how by only using the image level labels we can effectively localize the most distinctive regions in complex scenes and thus remove ambiguities leading to enhanced classification performance in highly complex aerial scenes. In the second chapter, we deal with refining segmentation labels of Building footprints in aerial images. This we effectively perform by first detecting errors in the initial segmentation masks and correcting only those segmentation pixels where we find a high probability of errors. The next two chapters of the thesis are related to the application of Generative Adversarial Networks. In the first one, we build an effective Cloud-GAN model to remove thin films of clouds in Sentinel-2 imagery by adopting a cyclic consistency loss. This utilizes an adversarial lossfunction to map cloudy-images to non-cloudy images in a fully unsupervised fashion, where the cyclic-loss helps in constraining the network to output a cloud-free image corresponding to the input cloudy image and not any random image in the target domain. Finally, the last chapter addresses a different set of high-resolution images, not coming from the RS domain but instead from High Dynamic Range Imaging (HDRI) application. These are 32-bit imageswhich capture the full extent of luminance present in the scene. Our goal is to quantize them to 8-bit Low Dynamic Range (LDR) images so that they can be projected effectively on our normal display screens while keeping the overall contrast and perception quality similar to that found in HDR images. We adopt a Multi-scale GAN model that focuses on both coarser as well as finer-level information necessary for high-resolution images. The final tone-mapped outputs have a high subjective quality without any perceived artifacts
FANTAZZINI, ALICE. "Deep Learning Techniques to Support Endovascular Surgical Procedures." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1076603.
Full textCalvanese, Giordano. "Volumetric deep learning techniques in oil & gas exploration." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20556/.
Full textDe, la Torre Gallart Jordi. "Diabetic Retinopathy Classification and Interpretation using Deep Learning Techniques." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667077.
Full textLa retinopatía diabética es una enfermedad crónica y una de las principales causas de ceguera y discapacidad visual en los pacientes diabéticos. El examen ocular a través de imágenes de la retina es utilizado por los médicos para detectar las lesiones relacionadas con esta enfermedad. En esta tesis, exploramos diferentes métodos novedosos para la clasificación automática del grado de enfermedad utilizando imágenes del fondo de la retina. Para este propósito, exploramos métodos basados en la extracción y clasificación automática, basadas en redes neuronales profundas. Además, diseñamos un nuevo método para la interpretación de los resultados. El modelo está concebido de manera modular para que pueda ser utilizado utilizando otras redes y dominios de clasificación. Demostramos experimentalmente que nuestro modelo de interpretación es capaz de detectar lesiones de retina en la imagen únicamente a partir de la información de clasificación. Además, proponemos un método para comprimir la representación interna de la información de la red. El método se basa en un análisis de componentes independientes sobre la información del vector de atributos interno de la red generado por el modelo para cada imagen. Usando nuestro método de interpretación mencionado anteriormente también es posible visualizar dichos componentes en la imagen. Finalmente, presentamos una aplicación experimental de nuestro mejor modelo para clasificar imágenes de retina de una población diferente, concretamente del Hospital de Reus. Los métodos propuestos alcanzan el nivel de rendimiento del oftalmólogo y son capaces de identificar con gran detalle las lesiones presentes en las imágenes, que se deducen solo de la información de clasificación de la imagen.
Diabetic Retinopathy is a chronic disease and one of the main causes of blindness and visual impairment for diabetic patients. Eye screening through retinal images is used by physicians to detect the lesions related with this disease. In this thesis, we explore different novel methods for the automatic diabetic retinopathy disease grade classification using retina fundus images. For this purpose, we explore methods based in automatic feature extraction and classification, based on deep neural networks. Furthermore, as results reported by these models are difficult to interpret, we design a new method for results interpretation. The model is designed in a modular manner in order to generalize its possible application to other networks and classification domains. We experimentally demonstrate that our interpretation model is able to detect retina lesions in the image solely from the classification information. Additionally, we propose a method for compressing model feature-space information. The method is based on a independent component analysis over the disentangled feature space information generated by the model for each image and serves also for identifying the mathematically independent elements causing the disease. Using our previously mentioned interpretation method is also possible to visualize such components on the image. Finally, we present an experimental application of our best model for classifying retina images of a different population, concretely from the Hospital de Reus. The methods proposed, achieve ophthalmologist performance level and are able to identify with great detail lesions present on images, inferred only from image classification information.
Rangel, José Carlos. "Scene Understanding for Mobile Robots exploiting Deep Learning Techniques." Doctoral thesis, Universidad de Alicante, 2017. http://hdl.handle.net/10045/72503.
Full textFan, Gao. "Clustering and Deep Learning Techniques for Structural Health Monitoring." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/80611.
Full textBooks on the topic "Deep Learning techniques"
Huang, Lei. Normalization Techniques in Deep Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14595-7.
Full textBriot, Jean-Pierre, Gaëtan Hadjeres, and François-David Pachet. Deep Learning Techniques for Music Generation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-70163-9.
Full textDevi, K. Gayathri, Kishore Balasubramanian, and Le Anh Ngoc. Machine Learning and Deep Learning Techniques for Medical Science. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003217497.
Full textPhuong, Nguyen Hoang, and Vladik Kreinovich, eds. Deep Learning and Other Soft Computing Techniques. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29447-1.
Full textAbdel-Basset, Mohamed, Nour Moustafa, Hossam Hawash, and Weiping Ding. Deep Learning Techniques for IoT Security and Privacy. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89025-4.
Full textDash, Sujata, Biswa Ranjan Acharya, Mamta Mittal, Ajith Abraham, and Arpad Kelemen, eds. Deep Learning Techniques for Biomedical and Health Informatics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33966-1.
Full textMangrulkar, Ramchandra S., Antonis Michalas, Narendra M. Shekokar, Meera Narvekar, and Pallavi V. Chavan. Design of Intelligent Applications Using Machine Learning and Deep Learning Techniques. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003133681.
Full textChaki, Jyotismita. Diagnosis of Neurological Disorders Based on Deep Learning Techniques. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003315452.
Full textSuganthi, K., R. Karthik, G. Rajesh, and Peter Ho Chiung Ching. Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003107477.
Full textHuang, Lei. Normalization Techniques in Deep Learning. Springer International Publishing AG, 2022.
Find full textBook chapters on the topic "Deep Learning techniques"
Ketkar, Nikhil. "Regularization Techniques." In Deep Learning with Python, 209–14. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2766-4_13.
Full textQamar, Usman, and Muhammad Summair Raza. "Deep Learning." In Data Science Concepts and Techniques with Applications, 217–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17442-1_8.
Full textMoons, Bert, Daniel Bankman, and Marian Verhelst. "Circuit Techniques for Approximate Computing." In Embedded Deep Learning, 89–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99223-5_4.
Full textDupuis, Etienne, Silviu Filip, Olivier Sentieys, David Novo, Ian O’Connor, and Alberto Bosio. "Approximations in Deep Learning." In Approximate Computing Techniques, 467–512. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94705-7_15.
Full textBharadwaj, Yellapragada Sai Srinivasa. "Advanced Deep Learning Techniques." In Advanced Deep Learning for Engineers and Scientists, 145–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66519-7_6.
Full textMathew, Amitha, P. Amudha, and S. Sivakumari. "Deep Learning Techniques: An Overview." In Advances in Intelligent Systems and Computing, 599–608. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3383-9_54.
Full textChoo, Sanghyun, and Chang S. Nam. "Deep Learning Techniques in Neuroergonomics." In Neuroergonomics, 115–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34784-0_7.
Full textManjón, José V., and Pierrick Coupe. "MRI Denoising Using Deep Learning." In Patch-Based Techniques in Medical Imaging, 12–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00500-9_2.
Full textPoonam Chaudhari and Himanshu Agarwal. "Progressive Review Towards Deep Learning Techniques." In Proceedings of the International Conference on Data Engineering and Communication Technology, 151–58. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1675-2_17.
Full textRamasubbareddy, Somula, D. Saidulu, V. Devasekhar, V. Swathi, Sahaj Singh Maini, and K. Govinda. "Music Generation Using Deep Learning Techniques." In Innovations in Computer Science and Engineering, 327–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7082-3_37.
Full textConference papers on the topic "Deep Learning techniques"
Goularas, Dionysis, and Sani Kamis. "Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00011.
Full text"Session: Deep Learning Techniques." In 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2019. http://dx.doi.org/10.1109/iccp48234.2019.8959780.
Full textGlassner, Andrew. "Deep learning." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3214834.3214856.
Full textGlassner, Andrew. "Deep learning." In SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3305366.3328026.
Full textYu, Wenhua. "Deep Learning Mesh Generation Techniques." In 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. IEEE, 2021. http://dx.doi.org/10.23919/aces-china52398.2021.9582049.
Full textFan, Tongtian, Roozbeh Sadeghian, and Siamak Aram. "Deer-Vehicle Collisions Prevention using Deep Learning Techniques." In 2020 IEEE Cloud Summit. IEEE, 2020. http://dx.doi.org/10.1109/ieeecloudsummit48914.2020.00021.
Full textSmith, Jason T., Nathan Un, Ruoyang Yao, Nattawut Sinsuebphon, Alena Rudkouskaya, Joseph Mazurkiewicz, Margarida Barroso, Pingkun Yan, and Xavier Intes. "Fluorescent Lifetime Imaging improved via Deep Learning." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/ntm.2019.nm3c.4.
Full textBatool, Syeda Fareeha, Faisal Rehman, Hanan Sharif, Maheen Jaffer, Anza Gul, and Sameen Butt. "Intrusion Detection using Deep Learning Techniques." In 2022 3rd International Conference on Innovations in Computer Science & Software Engineering (ICONICS). IEEE, 2022. http://dx.doi.org/10.1109/iconics56716.2022.10100584.
Full textDawra, Bhavya, Ananya Navneet Chauhan, Ritu Rani, Amita Dev, Poonam Bansal, and Arun Sharma. "Malware Classification using Deep Learning Techniques." In 2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON). IEEE, 2023. http://dx.doi.org/10.1109/delcon57910.2023.10127303.
Full textTripathi, Kshitij, and Pooja Pathak. "Deep Learning Techniques for Air Pollution." In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2021. http://dx.doi.org/10.1109/icccis51004.2021.9397130.
Full textReports on the topic "Deep Learning techniques"
Jiang, M., and B. Matei. Mesh Failure Prediction Using Deep Learning Techniques. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601556.
Full textHolm, Jennifer, Trevor Keenan, Daniel Ricciuto, and Vincent Emanuele. Deep learning techniques to disentangle water use efficiency, climate change, and carbon sequestration across ecosystem scales1. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769694.
Full textMoon, Jarrett. Using Deep Learning Techniques to Search for the MiniBooNE Low Energy Excess in MicroBooNE with > 3$\sigma$ Sensitivity. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1767032.
Full textMaher, Nicola, Pedro DiNezio, Antonietta Capotondi, and Jennifer Kay. Identifying precursors of daily to seasonal hydrological extremes over the USA using deep learning techniques and climate model ensembles. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769719.
Full textHuang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia, and John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textCelik, Ozer. Detection of Impacted Teeth Using Deep Learning Technique. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2021. http://dx.doi.org/10.7546/crabs.2021.02.14.
Full textPatwa, B., P. L. St-Charles, G. Bellefleur, and B. Rousseau. Predictive models for first arrivals on seismic reflection data, Manitoba, New Brunswick, and Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329758.
Full textMohammadian, Abolfazl, Amir Bahador Parsa, Homa Taghipour, Amir Davatgari, and Motahare Mohammadi. Best Practice Operation of Reversible Express Lanes for the Kennedy Expressway. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-033.
Full textHuang, Haohang, Jiayi Luo, Kelin Ding, Erol Tutumluer, John Hart, and Issam Qamhia. I-RIPRAP 3D Image Analysis Software: User Manual. Illinois Center for Transportation, June 2023. http://dx.doi.org/10.36501/0197-9191/23-008.
Full text