Dissertations / Theses on the topic 'Deep Learning techniques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Deep Learning techniques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hossain, Md Zakir. "Deep learning techniques for image captioning." Thesis, Hossain, Md. Zakir (2020) Deep learning techniques for image captioning. PhD thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/60782/.
Full textDomeniconi, Federico. "Deep Learning Techniques applied to Photometric Stereo." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20031/.
Full textCruz, Edmanuel. "Robotics semantic localization using deep learning techniques." Doctoral thesis, Universidad de Alicante, 2020. http://hdl.handle.net/10045/109462.
Full textNguyen, Tien Dung. "Multimodal emotion recognition using deep learning techniques." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/180753/1/Tien%20Dung_Nguyen_Thesis.pdf.
Full textSingh, Praveer. "Processing high-resolution images through deep learning techniques." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1172.
Full textIn this thesis, we discuss four different application scenarios that can be broadly grouped under the larger umbrella of Analyzing and Processing high-resolution images using deep learning techniques. The first three chapters encompass processing remote-sensing (RS) images which are captured either from airplanes or satellites from hundreds of kilometers away from the Earth. We start by addressing a challenging problem related to improving the classification of complex aerial scenes through a deep weakly supervised learning paradigm. We showcase as to how by only using the image level labels we can effectively localize the most distinctive regions in complex scenes and thus remove ambiguities leading to enhanced classification performance in highly complex aerial scenes. In the second chapter, we deal with refining segmentation labels of Building footprints in aerial images. This we effectively perform by first detecting errors in the initial segmentation masks and correcting only those segmentation pixels where we find a high probability of errors. The next two chapters of the thesis are related to the application of Generative Adversarial Networks. In the first one, we build an effective Cloud-GAN model to remove thin films of clouds in Sentinel-2 imagery by adopting a cyclic consistency loss. This utilizes an adversarial lossfunction to map cloudy-images to non-cloudy images in a fully unsupervised fashion, where the cyclic-loss helps in constraining the network to output a cloud-free image corresponding to the input cloudy image and not any random image in the target domain. Finally, the last chapter addresses a different set of high-resolution images, not coming from the RS domain but instead from High Dynamic Range Imaging (HDRI) application. These are 32-bit imageswhich capture the full extent of luminance present in the scene. Our goal is to quantize them to 8-bit Low Dynamic Range (LDR) images so that they can be projected effectively on our normal display screens while keeping the overall contrast and perception quality similar to that found in HDR images. We adopt a Multi-scale GAN model that focuses on both coarser as well as finer-level information necessary for high-resolution images. The final tone-mapped outputs have a high subjective quality without any perceived artifacts
FANTAZZINI, ALICE. "Deep Learning Techniques to Support Endovascular Surgical Procedures." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1076603.
Full textCalvanese, Giordano. "Volumetric deep learning techniques in oil & gas exploration." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20556/.
Full textDe, la Torre Gallart Jordi. "Diabetic Retinopathy Classification and Interpretation using Deep Learning Techniques." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667077.
Full textLa retinopatía diabética es una enfermedad crónica y una de las principales causas de ceguera y discapacidad visual en los pacientes diabéticos. El examen ocular a través de imágenes de la retina es utilizado por los médicos para detectar las lesiones relacionadas con esta enfermedad. En esta tesis, exploramos diferentes métodos novedosos para la clasificación automática del grado de enfermedad utilizando imágenes del fondo de la retina. Para este propósito, exploramos métodos basados en la extracción y clasificación automática, basadas en redes neuronales profundas. Además, diseñamos un nuevo método para la interpretación de los resultados. El modelo está concebido de manera modular para que pueda ser utilizado utilizando otras redes y dominios de clasificación. Demostramos experimentalmente que nuestro modelo de interpretación es capaz de detectar lesiones de retina en la imagen únicamente a partir de la información de clasificación. Además, proponemos un método para comprimir la representación interna de la información de la red. El método se basa en un análisis de componentes independientes sobre la información del vector de atributos interno de la red generado por el modelo para cada imagen. Usando nuestro método de interpretación mencionado anteriormente también es posible visualizar dichos componentes en la imagen. Finalmente, presentamos una aplicación experimental de nuestro mejor modelo para clasificar imágenes de retina de una población diferente, concretamente del Hospital de Reus. Los métodos propuestos alcanzan el nivel de rendimiento del oftalmólogo y son capaces de identificar con gran detalle las lesiones presentes en las imágenes, que se deducen solo de la información de clasificación de la imagen.
Diabetic Retinopathy is a chronic disease and one of the main causes of blindness and visual impairment for diabetic patients. Eye screening through retinal images is used by physicians to detect the lesions related with this disease. In this thesis, we explore different novel methods for the automatic diabetic retinopathy disease grade classification using retina fundus images. For this purpose, we explore methods based in automatic feature extraction and classification, based on deep neural networks. Furthermore, as results reported by these models are difficult to interpret, we design a new method for results interpretation. The model is designed in a modular manner in order to generalize its possible application to other networks and classification domains. We experimentally demonstrate that our interpretation model is able to detect retina lesions in the image solely from the classification information. Additionally, we propose a method for compressing model feature-space information. The method is based on a independent component analysis over the disentangled feature space information generated by the model for each image and serves also for identifying the mathematically independent elements causing the disease. Using our previously mentioned interpretation method is also possible to visualize such components on the image. Finally, we present an experimental application of our best model for classifying retina images of a different population, concretely from the Hospital de Reus. The methods proposed, achieve ophthalmologist performance level and are able to identify with great detail lesions present on images, inferred only from image classification information.
Rangel, José Carlos. "Scene Understanding for Mobile Robots exploiting Deep Learning Techniques." Doctoral thesis, Universidad de Alicante, 2017. http://hdl.handle.net/10045/72503.
Full textFan, Gao. "Clustering and Deep Learning Techniques for Structural Health Monitoring." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/80611.
Full textALI, ARSLAN. "Deep learning techniques for biometric authentication and robust classification." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2910084.
Full textBeretta, Davide. "Experience Replay in Sparse Rewards Problems using Deep Reinforcement Techniques." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17531/.
Full textPham, Cuong X. "Advanced techniques for data stream analysis and applications." Thesis, Griffith University, 2023. http://hdl.handle.net/10072/421691.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Belloni, Carole. "Deep learning and featured-based classification techniques for radar imagery." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0164.
Full textAutonomous moving platforms carrying radar systems can synthesise long antenna apertures and generate Synthetic Aperture Radar (SAR) images. SAR images provide strategic information for military and civilian applications and they can be acquired day and night under a wide range of weather conditions. Because the interpretation of SAR images is a common challenge, Automatic Target Recognition (ATR) algorithms can help assist with decision-making when the operator is in the loop or when the platforms are fully autonomous. One of the main limitations of developing SAR ATR algorithms is the lack of suitable and publicly available data. Optical images classification, instead, has recently attracted significantly more research interest because of the number of potential applications and the profusion of data. As a result, robust feature-based and deep learning classification methods have been developed for optical imaging that could be applied to the SAR domain. In this thesis, a new Inverse SAR (ISAR) dataset consisting of test and training images acquired under a range of geometrical conditions is presented. In addition, a method is proposed to generate extra synthetic images, by simulating realistic SAR noise on the original images, and increase the training efficiency of classification algorithms that require a wealth of data, such as deep neural networks. A Gaussian Mixture Model (GMM) segmentation approach is adapted to segment single-polarised SAR images of targets. Features proposed to characterise optical images are transferred to the SAR domain to carry out target classification after segmentation and their respective performanceis compared. A new pose-informed deep learning network architecture, that takes into account the effects of target orientation on target appearance in a SAR image, is proposed. The results presented in this thesis show that the use of this architecture provides a significant performance improvement for almost all datasets used in this work over a baseline network. Understanding the decision-making process of deep networks is another key challenge of deep learning. To address this issue, a new set of analytical tools is proposed that enables the identification, amongst other things, of the location of the algorithm focus points that lead to high level classification performance
Zandavi, Seid Miad. "Indoor Autonomous Flight Using Deep Learning-Based Image Understanding Techniques." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/22893.
Full textDARAIO, ELENA. "Digging Deep Into Urban Mobility Data Through Machine Learning Techniques." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972557.
Full textAtnafu, Selamawet Workalemahu <1989>. "Development and characterization of deep learning techniques for neuroimaging data." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10484/1/ATNAFU_SELAMAWET_FINAL_THESIS.pdf.
Full textCATTANEO, DANIELE. "Machine Learning Techniques for Urban Vehicle Localization." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263540.
Full textIn this thesis, we present different approaches which dealt with the localization of a road vehicle in urban settings. In particular, we made use of machine learning techniques to process the images coming from onboard cameras of a vehicle. The developed systems aim at computing a pose and therefore in case of deep neural networks, they are referred to as pose regression networks. To the best of our knowledge, some of the developed approaches are the first deep neural networks in the literature capable of computing visual pose regression basing on 3D maps. Such 3D maps are usually built by means of LIDAR devices, and this is done from large specialized companies, which make the world of commercial map makers. It is therefore likely to expect a commercial development of very high definition maps, which will make it possible to use them for the localization of vehicles. From our contacts with industrial makers of autonomous driving systems for road vehicles, we know that LIDARs onboard the vehicles, as for today, are not well accepted, mainly because of the state-of-the-art of LIDARs, which are based on mechanical scanning systems and therefore are not capable of sustaining the accelerations and vibrations of a road vehicle. For this reason, as today's vehicles already include many cameras, to be able to visually localize a vehicle on high-definition maps is a very significant perspective, not only under a research point of view, but also for real applications. The localization is an essential task for any mobile robot, especially for self-driving cars, where a wrong position estimate might lead to accidents and even fatal injuries for other road users. We cannot rely only on Global Navigation Satellites Systems, such as the Global Positioning System, because the accuracy and reliability of these systems are often inadequate for autonomous driving applications. This is even truer in urban environments, where buildings may block or deflect the satellites' signals, leading to wrong localization. In this thesis, we propose different approaches to overcome the GNSSs limitations, exploiting state-of-the-art Deep Neural Networks (DNNs) and machine learning techniques. First, we propose a probabilistic approach for estimating in which lane the vehicle is driving. Secondly, we integrate state-of-the-art Convolutional Neural Networks for pixel-level semantic segmentation and geometric reconstruction within a localization pipeline. We localize the vehicle by matching high-level features (road geometry and buildings) from an onboard stereo camera rig, with their counterparts in the OpenStreetMap service. We handled the uncertainties in a probabilistic fashion using particle filtering. Afterward, we propose a novel end-to-end DNNs for vehicle localization in LiDAR-maps. Finally, we propose a novel DNN-based technique for localizing a vehicle in LiDAR-maps without any prior information about its position. All the approaches proposed in this thesis have been validated using well-known autonomous driving datasets, such as KITTI and RobotCar.
Santonastasi, Luca. "A comparison among deep learning techniques in an autonomous driving context." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14708/.
Full textValentini, Alice. "Evaluation of deep learning techniques for object detection on embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15478/.
Full textAbdulrahman, Qasem Al-Molegi. "Contributions to Trajectory Analysis and Prediction: Statistical and Deep Learning Techniques." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667650.
Full textDebido a la estrecha relación entre la vida de las personas y determinadas ubicaciones geográficas, los datos históricos sobre trayectorias de una persona contienen información valiosa que se puede utilizar para descubrir sus estilos de vida y hábitos. El uso generalizado de dispositivos móviles con capacidad de localización ha impulsado la minería de trayectorias (trajectory mining), la cual se centra en la manipulación, el procesamiento y el análisis de datos de trayectorias para facilitar la extracción de conocimiento a partir de el histórico de las trayectorias de una persona. Basándonos en este análisis, incluso se puede llegar a predecir cuál será la probable próxima localización de una persona. Con estas técnicas, se abre la puerta a la mejora de los actuales servicios basados en la ubicación y en la aparición de nuevos modelos de negocio, basados en notificaciones ricas relacionadas con la predicción adecuada de las futuras ubicaciones de los usuarios. Esta tesis trata sobre la predicción de la ubicación y el descubrimiento de regiones significativas en las zonas de movimiento de las personas. Propone varios modelos de predicción, basándose en diferentes técnicas de aprendizaje automático (como las cadenas de Markov, las redes neuronales recurrentes y las redes neuronales convolucionales), considerando diferentes métodos de representación de entrada (embedding learning y one hot vector). Además, el modelo de predicción utiliza la attention technique (técnica de atención), que tiene como objetivo alinear los intervalos de tiempo en las trayectorias de las personas que son relevantes para una ubicación específica. La tesis también propone un esquema de codificación temporal para capturar las características del comportamiento del movimiento. Adicionalmente, analiza el impacto del aprendizaje de la representación espacial-temporal mediante la evaluación de diferentes arquitecturas. Finalmente, el análisis de la trayectoria y la predicción de localización se aplican a la monitorización en tiempo real para personas mayores.
Due to the relationship between people’s daily life and specific geographic locations, the historical trajectory data of a person contains lots of valuable information that can be used to discover their lifestyle and regularity. The generalisation in the use of mobile devices with location capabilities has fueled trajectory mining: the research area that focuses on manipulating, processing and analysing trajectory data to aid the extraction of higher level knowledge from the trajectory history of a user. Based on this analysis, even the person’s next probable location can be predicted. These techniques pave the way for the improvement of current location-based services and the rise of new business models, based on rich notifications related to the right prediction of users’ next location. This thesis addresses location prediction as well as the discovery of significant regions in person’s movement area. It proposes various models to predict the future state of people movement, based on different machine learning techniques (such as Markov Chains, Recurrent Neural Networks and Convolutional Neural Networks) and considering different input representation methods (embedding learning and one-hot vector). Moreover, the attention technique is used in the prediction model, aiming at aligning time intervals in people’s trajectories that are relevant to a specific location. Furthermore, the thesis proposes a time encoding scheme to capture movement behavior characteristics. In addition to that, it analyses the impact of Space-Time representation learning through evaluating different architectural configurations. Finally, trajectory analysis and location prediction is applied to real-time smartphone-based monitoring system for seniors.
ROSA, LAURA ELENA CUE LA. "CROP RECOGNITION FROM MULTITEMPORAL SAR IMAGE SEQUENCES USING DEEP LEARNING TECHNIQUES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34919@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A presente dissertação tem como objetivo avaliar um conjunto de técnicas de aprendizado profundo para o reconhecimento de culturas agrícolas a partir de sequências multitemporais de imagens SAR. Três métodos foram considerados neste estudo: Autoencoders (AEs), Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs). A avaliação experimental baseou-se em duas bases de dados contendo sequências de imagens geradas pelo sensor Sentinel- 1A. A primeira base cobre uma região tropical e a segunda uma região de clima temperado. Em todos os casos, utilizouse como referência para comparação um classificador Random Forest (RF) operando sobre atributos de textura derivados de matrizes de co-ocorrência. Para a região de clima temperado que apresenta menor dinâmica agrícola as técnicas de aprendizado profundo produziram consistentemente melhores resultados do que a abordagem via RF, sendo AEs o melhor em praticamente todos os experimentos. Na região tropical, onde a dinâmica é mais complexa, as técnicas de aprendizado profundo mostraram resultados similares aos produzidos pelo método RF, embora os quatro métodos tenham se alternado como o de melhor desempenho dependendo do número e das datas das imagens utilizadas nos experimentos. De um modo geral, as RNCs se mostraram mais estáveis do que os outros métodos, atingindo o melhores resultado entre os métodos avaliados ou estando muito próximos destes em praticamente todos os experimentos. Embora tenha apresentado bons resultados, não foi possível explorar todo o potencial das RTCs neste estudo, sobretudo, devido à dificuldade de se balancear o número de amostras de treinamento entre as classes de culturas agrícolas presentes na área de estudo. A dissertação propõe ainda duas estratégias de pós-processamento que exploram o conhecimento prévio sobre a dinâmica das culturas agrícolas presentes na área alvo. Experimentos demonstraram que tais técnicas podem produzir um aumento significativo da acurácia da classificação, especialmente para culturas menos abundantes.
The present dissertation aims to evaluate a set of deep learning (DL) techniques for crop mapping from multitemporal sequences of SAR images. Three methods were considered in this study: Autoencoders (AEs), Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs). The analysis was based on two databases containing image sequences generated by the Sentinel-1A. The first database covers a temperate region that presents a comparatively simpler dynamics, and second database of a tropical region that represents a scenario with complex dynamics. In all cases, a Random Forest (RF) classifier operating on texture features derived from co-occurrence matrices was used as baseline. For the temperate region, DL techniques consistently produced better results than the RF approach, with AE being the best one in almost all experiments. In the tropical region the DL approaches performed similar to RF, alternating as the best performing one for different experimental setups. By and large, CNNs achieved the best or next to the best performance in all experiments. Although the FCNs have performed well, the full potential was not fully exploited in our experiments, mainly due to the difficulty of balancing the number of training samples among the crop types. The dissertation also proposes two post-processing strategies that exploit prior knowledge about the crop dynamics in the target site. Experiments have shown that such techniques can significantly improve the recognition accuracy, in particular for less abundant crops.
Chaaro, Lina, and Antón Laura Martínez. "Crop and weed detection using image processing and deep learning techniques." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18630.
Full textPathirage, Chathurdara Sri Nadith. "Novel Deep Learning Techniques For Computer Vision and Structure Health Monitoring." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/70569.
Full textTan, Lu. "Image Processing by Variational Methods, Stochastic Programming and Deep Learning Techniques." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82126.
Full textMEHMOOD, TAHIR. "Knowledge Transfer Techniques in Deep Learning for Biomedical Named Entity Recognition." Doctoral thesis, Università degli studi di Brescia, 2021. http://hdl.handle.net/11379/546098.
Full textLe, Goff Matthieu. "Techniques d'analyse de contenu appliquées à l'imagerie spatiale." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19243/1/LE_GOFF_Matthieu.pdf.
Full textRosar, Kós Lassance Carlos Eduardo. "Graphs for deep learning representations." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0204.
Full textIn recent years, Deep Learning methods have achieved state of the art performance in a vast range of machine learning tasks, including image classification and multilingual automatic text translation. These architectures are trained to solve machine learning tasks in an end-to-end fashion. In order to reach top-tier performance, these architectures often require a very large number of trainable parameters. There are multiple undesirable consequences, and in order to tackle these issues, it is desired to be able to open the black boxes of deep learning architectures. Problematically, doing so is difficult due to the high dimensionality of representations and the stochasticity of the training process. In this thesis, we investigate these architectures by introducing a graph formalism based on the recent advances in Graph Signal Processing (GSP). Namely, we use graphs to represent the latent spaces of deep neural networks. We showcase that this graph formalism allows us to answer various questions including: ensuring generalization abilities, reducing the amount of arbitrary choices in the design of the learning process, improving robustness to small perturbations added to the inputs, and reducing computational complexity
Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.
Full textGRIMALDI, MATTEO. "Hardware-Aware Compression Techniques for Embedded Deep Neural Networks." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2933756.
Full textTovedal, Sofiea. "On The Effectiveness of Multi-TaskLearningAn evaluation of Multi-Task Learning techniques in deep learning models." Thesis, Umeå universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172257.
Full textGebremeskel, Ermias. "Analysis and Comparison of Distributed Training Techniques for Deep Neural Networks in a Dynamic Environment." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231350.
Full textTräffsäkerheten hos djupinlärningsmodeller tenderar att förbättras i relation med storleken på modellen. Implikationen blir att mängden beräkningskraft som krävs för att träna modeller ökar kontinuerligt.Distribuerad djupinlärning försöker lösa detta problem genom att distribuera beräkningsbelastning på flera enheter. Att distribuera beräkningarna på N enheter skulle i teorin innebär en linjär skalbarhet (xN). I verkligenheten stämmer sällan detta på grund av overhead från nätverkskommunikation eller I/O. Hopsworks är en dataanalys och maskininlärningsplattform. Syftetmed detta arbeta är att utforska ett möjligt sätt att utföra distribueraddjupinlärningträning på ett delat datorkluster, samt analysera prestandan hos olika algoritmer för distribuerad djupinlärning att använda i plattformen. Resultaten i denna studie visar att nätverksoptimala algoritmer såsom ring all-reduce skalar bättre för distribuerad djupinlärning änmånga-till-en kommunikationsalgoritmer såsom parameter server, men är inte lika feltoleranta. Insamlad data från experimenten visade på en flaskhals i nätverket vid träning på flera maskiner. Detta arbete visar även att det är möjligt att exekvera MPI program på ett hadoopkluster genom att bygga en prototyp som orkestrerar resursallokering, distribution och övervakning av exekvering. Trots att experimenten inte täcker olika klusterkonfigurationer så visar resultaten på vilka faktorer som bör tas hänsyn till vid distribuerad träning av djupinlärningsmodeller.
Nardi, Paolo. "Human Activity Recognition : Deep learning techniques for an upper body exercise classification system." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19410.
Full textKushibar, Kaisar. "Automatic segmentation of brain structures in magnetic resonance images using deep learning techniques." Doctoral thesis, Universitat de Girona, 2020. http://hdl.handle.net/10803/670766.
Full textEsta tesis doctoral se centra en el desarrollo de métodos basados en el aprendizaje profundo para la segmentación precisa de las estructuras cerebrales subcorticales a partir de la resonancia magnética. En primer lugar, hemos propuesto una arquitectura 2.5D CNN que combina características convolucionales y espaciales. En segundo lugar, hemos propuesto una técnica de adaptación de dominio supervisada para mejorar la robustez y la consistencia del modelo de aprendizaje profundo. En tercer lugar, hemos propuesto un método de adaptación de dominio no supervisado para eliminar el requisito de intervención manual para entrenar un modelo de aprendizaje profundo que sea robusto a las diferencias en las imágenes de la resonancia magnética de los conjuntos de datos multicéntricos y multiescáner. Los resultados experimentales de todas las propuestas demostraron la eficacia de nuestros enfoques para segmentar con precisión las estructuras cerebrales subcorticales y han mostrado un rendimiento de vanguardia en los conocidos conjuntos de datos de acceso público
Correa, Jullian Camila Asunción. "Assessment of deep learning techniques for diagnosis in thermal systems through anomaly detection." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/170129.
Full textA la hora de evaluar el desempeño de sistemas térmicos, mantener registros temporales de temperatura y caudal permiten obtener información sobre el rendimiento y estado de operación del sistema. Estudios de confiabilidad en equipos y componentes son un proceso fundamental para reducir costos de mantención y aumentar la vida útil de estos. La identificación de comportamientos anómalos se puede utilizar para detectar variaciones inesperadas en patrones de consumo o en la degradación de componentes en el sistema. En los últimos años, diversas técnicas de aprendizaje profundo se han aplicado de manera exitosa en la identificación y cuantificación de daño en distintos sistemas mecánicos. Por lo anterior, es de interés evaluar su uso para el análisis de desempeño en sistemas térmicos, en particular, técnicas especializadas para el análisis de series temporales. Los sistemas solares térmicos son una fuente de energía viable y sustentable para aplicaciones de agua caliente a nivel domiciliario e industrial. Su operación requiere una correcta integración y mantención para efectivamente reducir el consumo de combustibles fósiles. Sin embargo, un sistema de monitoreo aumenta los costos del sistema, por lo que se deben tomar decisiones estratégicas para seleccionar componentes críticos a los cuales observar. Temperaturas y caudales en colectores solares, bombas y acumuladores de calor son las principales variables para analizar bajo diferentes condiciones meteorológicas. El presente Trabajo de Título consiste en la evaluación de distintas técnicas de Aprendizaje Profundo para el desarrollo de un modelo de diagnóstico de detección de anomalías en sistemas térmicos. El caso de estudio utilizado es el sistema de agua caliente solar del edificio Beauchef 851, el cual es analizado y simulado con el software TRNSYS. A través de esta representación, es posible generar grandes cantidades de datos tales como temperatura, flujo y las condiciones ambientales para representar condiciones nominales y anómalas inducidas en el sistema. Se plantea utilizar técnicas de aprendizaje profundo para el análisis de información secuencial correspondiente a los datos generados a través de la simulación en TRNSYS. Se evalúan diferentes técnicas para el análisis temporal como, por ejemplo, Redes Neuronales Recurrentes Profundas para predicción de temperaturas bajo variadas configuraciones y horizontes de evaluación. Esto, con el fin de desarrollar un método para la detección de anomalías en patrones de consumo, eficiencia de los colectores solares y operación de las bombas. El aumento de la temperatura registrada a la salida del campo solar causada por una alteración en la demanda de agua caliente es identificada como anomalía con una exactitud de un 86% en las muestras estudiadas. A su vez, la detección de la reducción de la misma temperatura debido a anomalías inducidas en la eficiencia del colector obtiene una exactitud de un 70%. A pesar de la sensibilidad del modelo de detección, estos resultados son prometedores ante la posibilidad de integrar mediciones y validaciones experimentales de este.
LOMBARDI, MARCO. "Robust 3D Scanning and Real-Time Reconstruction Techniques in a Deep Learning Framework." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/555015.
Full textOver the years, academic research has produced a number of excellent results based on the use of what are commonly referred to as low-cost optical 3D scanners, born in the context of gaming platforms. These devices are characterized by compact dimensions, depth chambers with relatively low resolution and relatively large working range. Due to these characteristics, these tools are widely used in situations of use for indoor reconstructions or for object and gesture detection applications, where the level of detail of the 3D reconstruction is not necessarily a priority. An evolution of these technologies is represented by the hand-held portable 3D scanners, based on optical reconstruction, capable of producing higher quality data than their low-cost counterparts, while remaining in price ranges affordable at a professional level. In this context it is very interesting to have real-time 3D reconstruction techniques that support and are able to guide the user's action through immediate visual feedback. Concurrently to an evolutionary trend in terms of hardware, the interest in 3D reconstruction issues is finding new solutions in the rapidly growing research area linked to deep learning techniques. The importance of data is therefore crucial, other than in an experimental evaluation context, for the need to provide examples and information to the models we want to design and develop. However, we found some shortcomings related to the type of data used in academic research where there is a prevalent attention linked to data coming from low-cost devices compared to a wider panorama offered by modern scanning technologies. During my PhD, I was able to work with a pre-commercial prototype of a hand-held 3D scanner, called Insight, developed with the aim of providing reconstructions with a higher level of accuracy than its low-cost counterparts, to be used in application contexts where the target is a single small-medium scale object of which a faithful digital representation is desired. Examples of these contexts are quality control, reverse engineering, digitization for entertainment purposes (cinema and video games), commercial contexts (for example catalogs for online shops), cultural heritage (preservation of statues and historical objects) and also biomedical (e.g. anatomic scanning for the design of prostheses and orthoses). In this thesis we therefore focus on innovative 3D reconstruction techniques, mainly related to the aforementioned type of data, trying to analyze and respond to the challenging requirements related to tools such as those in use during our work, especially the real-time reconstruction requirement, comparing ourselves with other solutions available in the literature. In particular, we first took care to collect and make available a new dataset, DenseMatch, and to analyze and compare in depth, and for the first time together, several very recent solutions based on deep learning, potentially exploitable and usable in the contexts of interest. This comparison takes place using both a classic dataset and ours, to have a comparison that establishes which methods best generalize on different domains and which ones are the most promising for our context. Finally, we leverage all the results obtained to develop a real-time 3D reconstruction pipeline suitable for our handheld scanner that improves and makes the native reconstruction solution of the Insight scanner more reliable and robust. Our solution clearly outperforms the reference method in the literature, i.e. BundleFusion, especially for the type of data and for the applications of interest. We will see how optimal results are obtained by combining the best of classic approaches based on geometric features with those that exploit modern data-driven learning models.
Barnabò, Andrea. "Machine learning techniques for mammography applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textMcCloskey, Stephen Michael. "Towards Sleep Data Science: Objective Analysis of Sleep Disorders Using Machine Learning Techniques." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27140.
Full textPitaro, Raffaele. "McGiver: Module Classifier using fine tuning Machine Learning techniques." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textGnacek, Matthew. "Convolutional Neural Networks for Enhanced Compression Techniques." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620139118743853.
Full textSunesson, Albin. "Establishing Effective Techniques for Increasing Deep Neural Networks Inference Speed." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213833.
Full textDe senaste årens trend inom deep learning har varit att addera fler och fler lager till neurala nätverk. Det här introducerar nya utmaningar i applikationer med latensberoende. Problemet uppstår från mängden beräkningar som måste utföras vid varje evaluering. Detta adresseras med en reducering av inferenshastigheten. Jag analyserar två olika metoder för att snabba upp evalueringen av djupa neurala näverk. Den första metoden reducerar antalet vikter i ett faltningslager via en tensordekomposition på dess kärna. Den andra metoden låter samples lämna nätverket via tidiga förgreningar när en klassificering är säker. Båda metoderna utvärderas på flertalet nätverksarkitekturer med konsistenta resultat. Dekomposition på fältningskärnan visar 20-70% hastighetsökning med mindre än 1% försämring av klassifikationssäkerhet i evaluerade konfigurationer. Tidiga förgreningar visar upp till 300% hastighetsökning utan någon försämring av klassifikationssäkerhet när de evalueras på CPU.
Peri, Deepthi. "Applying Natural Language Processing and Deep Learning Techniques for Raga Recognition in Indian Classical Music." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99967.
Full textMaster of Science
In Indian Classical Music (ICM), the Raga is a musical piece's melodic framework. The Raga is a unique concept in ICM, not fully described by any of the fundamental concepts of Western classical music. The Raga provides musicians with a melodic fabric, within which all compositions and improvisations must take place. Raga recognition refers to identifying the constituent Raga in an audio file, a challenging and important problem with several known prior approaches and applications in Music Information Retrieval. This thesis presents a novel approach to recognizing Ragas by representing this task as a document classification problem, solved by applying a deep learning technique. A digital audio excerpt is processed into a textual document structure, from which the constituent Raga is learned. Based on the evaluation with third-party datasets, our recognition approach achieves high accuracy, thus outperforming prior approaches.
Yu, Ying. "Improving the Accuracy of 2D On-Road Object Detection Based on Deep Learning Techniques." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235194.
Full textDetta dokument fokuserar p att frbttra noggrannheten nr det gller att upptckaon-road-objekt, inklusive bilar, lastbilar, fotgngare och cyklister. Fr att uppfyllakraven i det inbyggda visionssystemet, och upprtthlla en hg upptckthastighet iADAS-domnen (advanced drive assist system), r den neurala ntverksmodellenutformad baserat p enkanalsbilder som inmatning frn en monokulr kamera.Under de senaste decennierna har systemet fr framtida kollisionsundvikandesystem, ett delsystem fr ADAS, antagits allmnt i fordonsskerhetssystem fr sittstora bidrag till att minska olyckor. Djupa neurala ntverk, som den senastetekniken fr detektering av objekt, kan uppns i detta inbyggda visionssystemmed e↵ektiv berkning p FPGA och hg inferenshastighet. Siktat p att upptckavgar p vgar i hg noggrannhet, tillmpar vi ett avancerat neuralt ntverk, singleshotmulti-box detector (SSD).I det hr avhandlingsarbetet utfrs flera experiment om hur man frbttrar SSDmodellernasnoggrannhet med grtoningng. Genom att lgga till lmpliga extrastandardldor i hglagerskartor och justera hela skalaomrdet har upptckt AP veralla klasser frbttrats e↵ektivt kring 20 %, med mAP av SSD300-modellen kat frn45,1 % till initialt 76,8 % och mAP av SSD512-modellen p KITTI-dataset kadefrn 58,5 % till 78,8 %. Dessutom har det kontrollerats att utan frginformationinte kommer att frsmras i bde prestanda och prestanda. Experimentella resultatutvrderades med hjlp av Nvidia Tesla P100 GPU p KITTI Vision BenchmarkSuite, Udacity annoterade dataset och en kort video inspelad p en gata i Stockholm.
Gomez-Donoso, Francisco. "Contributions to 3D object recognition and 3D hand pose estimation using deep learning techniques." Doctoral thesis, Universidad de Alicante, 2020. http://hdl.handle.net/10045/110658.
Full textPina, Otey Sebastian. "Deep Learning and Bayesian Techniques applied to Big Data in Industry and Neutrino Oscillations." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671967.
Full textLas oscilaciones de neutrinos son un fenómeno complejo de interés teórico y experimental en la física fundamental, estudiado a través de diversos experimentos, como la Colaboración T2K ubicada en Japón. T2K se compone de dos instalaciones, que producen y miden las interacciones de neutrinos para comprender mejor sus oscilaciones a través del análisis de datos en forma de inferencia de parámetros, simulación de modelos y respuesta del detector. A través de este trabajo, las técnicas modernas de deep learning en forma de estimadores de densidad neuronales y redes neuronales sobre grafos se aplicarán y verificarán a fondo en los casos de uso de T2K, evaluando sus beneficios y deficiencias en comparación con los métodos tradicionales. Adicionalmente se discutirá un uso industrial de estas metodologías para la red eléctrica española.
Neutrino oscillations are a complex phenomenon of theoretical and experimental interest in fundamental physics, studied through diverse experiments, such as the T2K Collaboration situated in Japan. T2K is composed of two facilities, which produce and measure neutrino interactions to get a better understanding of their oscillations through data analysis in the form of parameter inference, model simulation and detector response. Through this work, state-of-the-art deep learning techniques in the form of neural density estimators and graph neural networks will be applied and thoroughly verified in T2K use cases, assessing their benefits and shortcomings compared to traditional methods. Additionally an industrial usage of these methodologies for the Spanish electrical network will be discussed.
Universitat Autònoma de Barcelona. Programa de Doctorat en Física
Singh, Jaswinder. "Detection of Cis-Trans Conformation in Protein Structure using Deep Learning Neural Network Techniques." Thesis, Griffith University, 2019. http://hdl.handle.net/10072/384790.
Full textThesis (Masters)
Master of Philosophy (MPhil)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Olsson, Johan. "A Client-Server Solution for Detecting Guns in School Environment using Deep Learning Techniques." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162476.
Full textQuan, Weize. "Detection of computer-generated images via deep learning." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT076.
Full textWith the advances of image editing and generation software tools, it has become easier to tamper with the content of images or create new images, even for novices. These generated images, such as computer graphics (CG) image and colorized image (CI), have high-quality visual realism, and potentially throw huge threats to many important scenarios. For instance, the judicial departments need to verify that pictures are not produced by computer graphics rendering technology, colorized images can cause recognition/monitoring systems to produce incorrect decisions, and so on. Therefore, the detection of computer-generated images has attracted widespread attention in the multimedia security research community. In this thesis, we study the identification of different computer-generated images including CG image and CI, namely, identifying whether an image is acquired by a camera or generated by a computer program. The main objective is to design an efficient detector, which has high classification accuracy and good generalization capability. Specifically, we consider dataset construction, network architecture, training methodology, visualization and understanding, for the considered forensic problems. The main contributions are: (1) a colorized image detection method based on negative sample insertion, (2) a generalization method for colorized image detection, (3) a method for the identification of natural image (NI) and CG image based on CNN (Convolutional Neural Network), and (4) a CG image identification method based on the enhancement of feature diversity and adversarial samples
Heffernan, Rhys. "Addressing One-Dimensional Protein Structure Prediction Problems with Machine Learning Techniques." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/381401.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Alabdulrahman, Rabaa. "Towards Personalized Recommendation Systems: Domain-Driven Machine Learning Techniques and Frameworks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41012.
Full text