Academic literature on the topic 'Deep learning with uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep learning with uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep learning with uncertainty"
Liu, Wei, Xiaodong Yue, Yufei Chen, and Thierry Denoeux. "Trusted Multi-View Deep Learning with Opinion Aggregation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7585–93. http://dx.doi.org/10.1609/aaai.v36i7.20724.
Full textOh, Dongpin, and Bonggun Shin. "Improving Evidential Deep Learning via Multi-Task Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7895–903. http://dx.doi.org/10.1609/aaai.v36i7.20759.
Full textBajorath, Jürgen. "Understanding uncertainty in deep learning builds confidence." Artificial Intelligence in the Life Sciences 2 (December 2022): 100033. http://dx.doi.org/10.1016/j.ailsci.2022.100033.
Full textvan den Berg, Cornelis A. T., and Ettore F. Meliadò. "Uncertainty Assessment for Deep Learning Radiotherapy Applications." Seminars in Radiation Oncology 32, no. 4 (October 2022): 304–18. http://dx.doi.org/10.1016/j.semradonc.2022.06.001.
Full textZheng, Rui, Shulin Zhang, Lei Liu, Yuhao Luo, and Mingzhai Sun. "Uncertainty in Bayesian deep label distribution learning." Applied Soft Computing 101 (March 2021): 107046. http://dx.doi.org/10.1016/j.asoc.2020.107046.
Full textLockwood, Owen, and Mei Si. "A Review of Uncertainty for Deep Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 18, no. 1 (October 11, 2022): 155–62. http://dx.doi.org/10.1609/aiide.v18i1.21959.
Full textKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (October 3, 2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Full textCaldeira, João, and Brian Nord. "Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms." Machine Learning: Science and Technology 2, no. 1 (December 4, 2020): 015002. http://dx.doi.org/10.1088/2632-2153/aba6f3.
Full textDa Silva, Felipe Leno, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. "Uncertainty-Aware Action Advising for Deep Reinforcement Learning Agents." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5792–99. http://dx.doi.org/10.1609/aaai.v34i04.6036.
Full textKawano, Yasufumi, Yoshiki Nota, Rinpei Mochizuki, and Yoshimitsu Aoki. "Non-Deep Active Learning for Deep Neural Networks." Sensors 22, no. 14 (July 13, 2022): 5244. http://dx.doi.org/10.3390/s22145244.
Full textDissertations / Theses on the topic "Deep learning with uncertainty"
Kim, Alisa. "Deep Learning for Uncertainty Measurement." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22161.
Full textThis thesis focuses on solving the problem of uncertainty measurement and its impact on business decisions while pursuing two goals: first, develop and validate accurate and robust models for uncertainty quantification, employing both the well established statistical models and newly developed machine learning tools, with particular focus on deep learning. The second goal revolves around the industrial application of proposed models, applying them to real-world cases when measuring volatility or making a risky decision entails a direct and substantial gain or loss. This thesis started with the exploration of implied volatility (IV) as a proxy for investors' perception of uncertainty for a new class of assets - crypto-currencies. The second paper focused on methods to identify risk-loving traders and employed the DNN infrastructure for it to investigate further the risk-taking behavior of market actors that both stems from and perpetuates uncertainty. The third paper addressed the challenging endeavor of fraud detection and offered the decision support model that allowed a more accurate and interpretable evaluation of financial reports submitted for audit. Following the importance of risk assessment and agents' expectations in economic development and building on the existing works of Baker (2016) and their economic policy uncertainty (EPU) index, it offered a novel DL-NLP-based method for the quantification of economic policy uncertainty. In summary, this thesis offers insights that are highly relevant to both researchers and practitioners. The new deep learning-based solutions exhibit superior performance to existing approaches to quantify and explain economic uncertainty, allowing for more accurate forecasting, enhanced planning capacities, and mitigated risks. The offered use-cases provide a road-map for further development of the DL tools in practice and constitute a platform for further research.
Kim, Alisa [Verfasser]. "Deep Learning for Uncertainty Measurement / Alisa Kim." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1227300824/34.
Full textKendall, Alex Guy. "Geometry and uncertainty in deep learning for computer vision." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287944.
Full textAguilar, Eduardo. "Deep Learning and Uncertainty Modeling in Visual Food Analysis." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670751.
Full textEl desafiante problema que plantea el análisis de alimentos, la facilidad para recopilar imágenes de alimentos y sus numerosas aplicaciones para la salud y el ocio son algunos de los factores principales que han incentivado la generación de varios enfoques de visión por computadora para abordar este problema. Sin embargo, la ambigüedad alimentaria, variabilidad entre clases y similitud dentro de la clase definen un desafío real para los algoritmos de aprendizaje profundo y visión por computadora. Con la llegada de las redes neuronales convolucionales, el complejo problema del análisis visual de los alimentos ha experimentado una mejora significativa. A pesar de ello, para aplicaciones reales, donde se deben analizar y reconocer miles de alimentos, es necesario comprender mejor lo que aprende el modelo y, a partir de ello, orientar su aprendizaje en aspectos más discriminatorios para mejorar su precisión y robustez. En esta tesis abordamos el problema del análisis de imágenes de alimentos mediante métodos basados en algoritmos de aprendizaje profundo. Hay dos partes distinguibles. En la primera parte, nos centramos en la tarea de reconocimiento de alimentos y profundizamos en el modelado de incertidumbre. Primero, proponemos un nuevo modelo multi-tarea que es capaz de predecir simultáneamente diferentes tareas relacionadas con los alimentos. Aquí, ampliamos el modelo de incertidumbre homocedástica para permitir la clasificación tanto de etiqueta única como de etiquetas múltiples, y proponemos un término de regularización, que pondera conjuntamente las tareas y sus correlaciones. En segundo lugar, proponemos un novedoso esquema de predicción basado en una jerarquía de clases que considera clasificadores locales y un clasificador plano. Para decidir el enfoque a utilizar (plano o local), definimos criterios basados en la incertidumbre epistémica estimada a partir de los clasificadores de 'hijos' y la predicción del clasificador de 'padres'. Y tercero, proponemos tres nuevas estrategias de aumento de datos que analizan la incertidumbre epistémica a nivel de clase o de muestra para guiar el entrenamiento del modelo. En la segunda parte contribuimos al diseño de nuevos métodos para la detección de alimentos (clasificación food/non-food), para generar predicciones a partir de un conjunto de clasificadores de alimentos y para la detección semántica de alimentos. Primero, establecemos en estado del arte en cuanto a últimos avances en clasificación de food/non-food y proponemos un modelo óptimo basado en la arquitectura GoogLeNet, Análisis de Componentes Principales (PCA) y una Máquina de Vector de Soporte (SVM). En segundo lugar, proponemos medidas difusas para combinar múltiples clasificadores para el reconocimiento de alimentos basados en dos arquitecturas convolucionales diferentes que se complementan y de este modo, logran una mejora en el rendimiento. Y tercero, abordamos el problema del análisis automático de bandejas de alimentos en el entorno de comedores y restaurantes a través de un nuevo enfoque que integra en un mismo marco la localización, el reconocimiento y la segmentación de alimentos para la detección semántica de alimentos. Todos los métodos diseñados en esta tesis están validados y contrastados sobre conjuntos de datos de alimentos públicos relevantes y los resultados obtenidos se informan en detalle.
Ekelund, Måns. "Uncertainty Estimation for Deep Learning-based LPI Radar Classification : A Comparative Study of Bayesian Neural Networks and Deep Ensembles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301653.
Full textTidigare studier har visat att djupa neurala nätverk (DNN) kan klassificera signalmönster för en speciell typ av radar (LPI) som är skapad för att vara svår att identifiera och avlyssna. Traditionella neurala nätverk saknar dock ett naturligt sätt att skatta osäkerhet, vilket skadar deras pålitlighet och förhindrar att de används i säkerhetskritiska miljöer. Osäkerhetsskattning för djupinlärning har därför vuxit och på senare tid blivit ett stort område med två tydliga kategorier, Bayesiansk approximering och ensemblemetoder. LPI radarklassificering är av stort intresse för försvarsindustrin, och tekniken kommer med största sannolikhet att appliceras i säkerhetskritiska miljöer. I denna studie jämför vi Bayesianska neurala nätverk och djupa ensembler för LPI radarklassificering. Resultaten från studien pekar på att en djup ensemble uppnår högre träffsäkerhet än ett Bayesianskt neuralt nätverk och att båda metoderna uppvisar återhållsamhet i sina förutsägelser jämfört med ett traditionellt djupt neuralt nätverk. Vi skattar osäkerhet som entropi och visar att osäkerheten i metodernas slutledningar ökar både på höga brusnivåer och på data som är något förskjuten från den kända datadistributionen. Resultaten visar dock att metodernas osäkerhet inte ökar jämfört med ett vanligt nätverk när de får se tidigare osedda signal mönster. Vi visar också att val av metod kan influeras av tillgängliga resurser, eftersom djupa ensembler kräver mycket minne jämfört med ett traditionellt eller Bayesianskt neuralt nätverk.
Lee, Hong Yun. "Deep Learning for Visual-Inertial Odometry: Estimation of Monocular Camera Ego-Motion and its Uncertainty." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156331321922759.
Full textCofré, Martel Sergio Manuel Ignacio. "A deep learning based framework for physical assets' health prognostics under uncertainty for big Machinery Data." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/168080.
Full textEl desarrollo en tecnología de mediciones ha permitido el monitoreo continuo de sistemas complejos a través de múltiples sensores, generando así grandes bases de datos. Estos datos normalmente son almacenados para ser posteriormente analizados con técnicas tradicionales de Prognostics and Health Management (PHM). Sin embargo, muchas veces, gran parte de esta información es desperdiciada, ya que los métodos tradicionales de PHM requieren de conocimiento experto sobre el sistema para su implementación. Es por esto que, para estimar parámetros relacionados a confiabilidad, los enfoques basados en análisis de datos pueden utilizarse para complementar los métodos de PHM. El objetivo de esta tesis consiste en desarrollar e implementar un marco de trabajo basado en técnicas de Aprendizaje Profundo para la estimación del estado de salud de sistemas y componentes, utilizando datos multisensoriales de monitoreo. Para esto, se definen los siguientes objetivos específicos: Desarrollar una arquitectura capaz de extraer características temporales y espaciales de los datos. Proponer un marco de trabajo para la estimación del estado de salud, y validarlo utilizando dos conjuntos de datos: C-MAPSS turbofan engine, y baterías ion-litio CS2. Finalmente, entregar una estimación de la propagación de la incertidumbre en los pronósticos del estado de salud. Se propone una estructura que integre las ventajas de relación espacial de las Convolutional Neural Networks, junto con el análisis secuencial de las Long-Short Term Memory Recurrent Neural Networks. Utilizando Dropout tanto para la regularización, como también para una aproximación bayesiana para la estimación de incertidumbre de los modelos. De acuerdo con lo anterior, la arquitectura propuesta recibe el nombre CNNBiLSTM. Para los datos de C-MAPSS se entrenan cuatro modelos diferentes, uno para cada subconjunto de datos, con el objetivo de estimar la vida remanente útil. Los modelos arrojan resultados superiores al estado del arte en la raíz del error medio cuadrado (RMSE), mostrando robustez en el proceso de entrenamiento, y baja incertidumbre en sus predicciones. Resultados similares se obtienen para el conjunto de datos CS2, donde el modelo entrenado con todas las celdas de batería logra estimar el estado de carga y el estado de salud con un bajo RMSE y una pequeña incertidumbre sobre su estimación de valores. Los resultados obtenidos por los modelos entrenados muestran que la arquitectura propuesta es adaptable a diferentes sistemas y puede obtener relaciones temporales abstractas de los datos sensoriales para la evaluación de confiabilidad. Además, los modelos muestran robustez durante el proceso de entrenamiento, así como una estimación precisa con baja incertidumbre.
Martin, Alice. "Deep learning models and algorithms for sequential data problems : applications to language modelling and uncertainty quantification." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS007.
Full textIn this thesis, we develop new models and algorithms to solve deep learning tasks on sequential data problems, with the perspective of tackling the pitfalls of current approaches for learning language models based on neural networks. A first research work develops a new deep generative model for sequential data based on Sequential Monte Carlo Methods, that enables to better model diversity in language modelling tasks, and better quantify uncertainty in sequential regression problems. A second research work aims to facilitate the use of SMC techniques within deep learning architectures, by developing a new online smoothing algorithm with reduced computational cost, and applicable on a wider scope of state-space models, including deep generative models. Finally, a third research work proposes the first reinforcement learning that enables to learn conditional language models from scratch (i.e without supervised datasets), based on a truncation mechanism of the natural language action space with a pretrained language model
Wang, Peng. "STOCHASTIC MODELING AND UNCERTAINTY EVALUATION FOR PERFORMANCE PROGNOSIS IN DYNAMICAL SYSTEMS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499788641069811.
Full textAsgrimsson, David Steinar. "Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451.
Full textEn maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem.
Books on the topic "Deep learning with uncertainty"
Marchau, Vincent A. W. J., Warren E. Walker, Pieter J. T. M. Bloemen, and Steven W. Popper, eds. Decision Making under Deep Uncertainty. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05252-2.
Full textSaefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen: Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.
Full textBishop, Christopher M., and Hugh Bishop. Deep Learning. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45468-4.
Full textKruse, René-Marcel, Benjamin Säfken, Alexander Silbersdorff, and Christoph Weisser, eds. Learning Deep Textwork. Göttingen: Göttingen University Press, 2021. http://dx.doi.org/10.17875/gup2021-1608.
Full textRodriguez, Andres. Deep Learning Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8.
Full textFergus, Paul, and Carl Chalmers. Applied Deep Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04420-5.
Full textCalin, Ovidiu. Deep Learning Architectures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.
Full textMatsushita, Kayo, ed. Deep Active Learning. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.
Full textMichelucci, Umberto. Applied Deep Learning. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.
Full textBook chapters on the topic "Deep learning with uncertainty"
Şen, Zekâi. "Uncertainty and Modeling Principles." In Shallow and Deep Learning Principles, 141–243. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29555-3_4.
Full textWüthrich, Mario V., and Michael Merz. "Deep Learning." In Springer Actuarial, 267–379. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_7.
Full textPlasencia Salgueiro, Armando, Lynnette González Rodríguez, and Ileana Suárez Blanco. "Managing Deep Learning Uncertainty for Unmanned Systems." In Deep Learning for Unmanned Systems, 175–223. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77939-9_6.
Full textWüthrich, Mario V., and Michael Merz. "Selected Topics in Deep Learning." In Springer Actuarial, 453–535. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_11.
Full textGonzález-Rodríguez, Lynnette, and Armando Plasencia-Salgueiro. "Uncertainty-Aware Autonomous Mobile Robot Navigation with Deep Reinforcement Learning." In Deep Learning for Unmanned Systems, 225–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77939-9_7.
Full textStåhl, Niclas, Göran Falkman, Alexander Karlsson, and Gunnar Mathiason. "Evaluation of Uncertainty Quantification in Deep Learning." In Information Processing and Management of Uncertainty in Knowledge-Based Systems, 556–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50146-4_41.
Full textGrigorescu, Irina, Alena Uus, Daan Christiaens, Lucilio Cordero-Grande, Jana Hutter, Dafnis Batalle, A. David Edwards, Joseph V. Hajnal, Marc Modat, and Maria Deprez. "Uncertainty-Aware Deep Learning Based Deformable Registration." In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis, 54–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87735-4_6.
Full textLinsner, Florian, Linara Adilova, Sina Däubener, Michael Kamp, and Asja Fischer. "Approaches to Uncertainty Quantification in Federated Deep Learning." In Communications in Computer and Information Science, 128–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93736-2_12.
Full textImam, Raza, and Mohammed Talha Alam. "Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer Learning and Imbalance Handling in Deep Learning Models." In Epistemic Uncertainty in Artificial Intelligence, 74–88. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57963-9_6.
Full textGhoshal, Biraja, Bhargab Ghoshal, and Allan Tucker. "Leveraging Uncertainty in Deep Learning for Pancreatic Adenocarcinoma Grading." In Medical Image Understanding and Analysis, 565–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12053-4_42.
Full textConference papers on the topic "Deep learning with uncertainty"
Kong, Lingkai, Harshavardhan Kamarthi, Peng Chen, B. Aditya Prakash, and Chao Zhang. "Uncertainty Quantification in Deep Learning." In KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3580305.3599577.
Full textDarling, Michael, Justin Doak, Richard Field, and Mark Smith. "Optimizing Machine Learning Decisions with Prediction Uncertainty." In Proposed for presentation at the Machine Learning Deep Learning (MLDL) in ,. US DOE, 2021. http://dx.doi.org/10.2172/1888406.
Full textKail, Roman, Kirill Fedyanin, Nikita Muravev, Alexey Zaytsev, and Maxim Panov. "ScaleFace: Uncertainty-aware Deep Metric Learning." In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302546.
Full textSanchez, Téo, Baptiste Caramiaux, Pierre Thiel, and Wendy E. Mackay. "Deep Learning Uncertainty in Machine Teaching." In IUI '22: 27th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3490099.3511117.
Full textAhuja, Rishit Mohan, Maxime Alos, Alex McQuilkin, and Anudeep Venapally. "Quantifying Uncertainty using Bayesian Deep Learning and Deep Ensembles." In 2023 IEEE 3rd International Conference on Technology, Engineering, Management for Societal impact using Marketing, Entrepreneurship and Talent (TEMSMET). IEEE, 2023. http://dx.doi.org/10.1109/temsmet56707.2023.10150105.
Full textZHANG, YANG, YOU-WU WANG, and YI-QING NI. "HYBRID PROBABILISTIC DEEP LEARNING FOR DAMAGE IDENTIFICATION." In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/37014.
Full textHu, Qian, and Huzefa Rangwala. "Reliable Deep Grade Prediction with Uncertainty Estimation." In LAK19: The 9th International Learning Analytics & Knowledge Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3303772.3303802.
Full textGLAUNER, PATRICK O. "DEEP LEARNING FOR SMILE RECOGNITION." In Conference on Uncertainty Modelling in Knowledge Engineering and Decision Making (FLINS 2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813146976_0053.
Full textRajput, Kishansingh, Malachi Schram, and Karthik Somayaji. "Uncertainty Aware Deep Learning for Particle Accelerators." In 36th Conference on Neural Information Processing, Hybrid/New Orleans, November 29, 2022. US DOE, 2022. http://dx.doi.org/10.2172/1998542.
Full textPantoja, Maria, Drazen Fabris, and Robert Klienhenz. "Uncertainty in Deep Learning for Image Processing." In International Conference on Industrial Application Engineering 2023. The Institute of Industrial Applications Engineers, 2023. http://dx.doi.org/10.12792/iciae2023.013.
Full textReports on the topic "Deep learning with uncertainty"
Caldeira, Joao. Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1623354.
Full textCatanach, Thomas, and Jed Duersch. Efficient Generalizable Deep Learning. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1760400.
Full textStracuzzi, David, Maximillian Chen, Michael Darling, Matthew Peterson, and Charlie Vollmer. Uncertainty Quantification for Machine Learning. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1733262.
Full textThompson, A., K. Jagan, A. Sundar, R. Khatry, J. Donlevy, S. Thomas, and P. Harris. Uncertainty evaluation for machine learning. National Physical Laboratory, January 2022. http://dx.doi.org/10.47120/npl.ms34.
Full textGroh, Micah. NOvA Reconstruction using Deep Learning. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1462092.
Full textGeiss, Andrew, Joseph Hardin, Sam Silva, William Jr., Adam Varble, and Jiwen Fan. Deep Learning for Ensemble Forecasting. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769692.
Full textHarris, James, Shannon Kinkead, Dylan Fox, and Yang Ho. Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1855019.
Full textDraelos, Timothy John, Nadine E. Miner, Christopher C. Lamb, Craig Michael Vineyard, Kristofor David Carlson, Conrad D. James, and James Bradley Aimone. Neurogenesis Deep Learning: Extending deep networks to accommodate new classes. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1505351.
Full textFan, Yiming. Nonlocal Operator Learning with Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1813660.
Full textBalaji, Praveen. Detecting Stellar Streams through Deep Learning. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1637622.
Full text