Books on the topic 'Deep learning with uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Deep learning with uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Marchau, Vincent A. W. J., Warren E. Walker, Pieter J. T. M. Bloemen, and Steven W. Popper, eds. Decision Making under Deep Uncertainty. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05252-2.
Full textSaefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen: Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.
Full textBishop, Christopher M., and Hugh Bishop. Deep Learning. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45468-4.
Full textKruse, René-Marcel, Benjamin Säfken, Alexander Silbersdorff, and Christoph Weisser, eds. Learning Deep Textwork. Göttingen: Göttingen University Press, 2021. http://dx.doi.org/10.17875/gup2021-1608.
Full textRodriguez, Andres. Deep Learning Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8.
Full textFergus, Paul, and Carl Chalmers. Applied Deep Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04420-5.
Full textCalin, Ovidiu. Deep Learning Architectures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.
Full textMatsushita, Kayo, ed. Deep Active Learning. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.
Full textMichelucci, Umberto. Applied Deep Learning. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.
Full textMoons, Bert, Daniel Bankman, and Marian Verhelst. Embedded Deep Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99223-5.
Full textWani, M. Arif, Mehmed Kantardzic, and Moamar Sayed-Mouchaweh, eds. Deep Learning Applications. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1816-4.
Full textDong, Hao, Zihan Ding, and Shanghang Zhang, eds. Deep Reinforcement Learning. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4095-0.
Full textKim, Phil. MATLAB Deep Learning. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6.
Full textSewak, Mohit. Deep Reinforcement Learning. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8285-7.
Full textGamba, Jonah. Deep Learning Models. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9672-8.
Full textJo, Taeho. Deep Learning Foundations. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32879-4.
Full textSingaram, Jayakumar, S. S. Iyengar, and Azad M. Madni. Deep Learning Networks. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-39244-3.
Full textEnrique, Castillo. Expert systems: Uncertainty and learning. Southampton: Computational Mechanics, 1991.
Find full textHu, Fei, and Xiali Hei. AI, Machine Learning and Deep Learning. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003187158.
Full textKetkar, Nikhil, and Jojo Moolayil. Deep Learning with Python. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-5364-9.
Full textKim, Kwangjo, and Harry Chandra Tanuwidjaja. Privacy-Preserving Deep Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3764-3.
Full textBenois-Pineau, Jenny, and Akka Zemmari, eds. Multi-faceted Deep Learning. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74478-6.
Full textYe, Jong Chul. Geometry of Deep Learning. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6046-7.
Full textAhmed, Khaled R., and Henry Hexmoor, eds. Blockchain and Deep Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95419-2.
Full textBetti, Alessandro, Marco Gori, and Stefano Melacci. Deep Learning to See. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90987-1.
Full textBetti, Alessandro, Marco Gori, and Stefano Melacci. Deep Learning to See. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90987-1.
Full textPaluszek, Michael, Stephanie Thomas, and Eric Ham. Practical MATLAB Deep Learning. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7912-0.
Full textWani, M. Arif, Farooq Ahmad Bhat, Saduf Afzal, and Asif Iqbal Khan. Advances in Deep Learning. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-6794-6.
Full textMichelucci, Umberto. Advanced Applied Deep Learning. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4976-5.
Full textPaluszek, Michael, and Stephanie Thomas. Practical MATLAB Deep Learning. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5124-9.
Full textSalvaris, Mathew, Danielle Dean, and Wee Hyong Tok. Deep Learning with Azure. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3679-6.
Full textBhanu, Bir, and Ajay Kumar, eds. Deep Learning for Biometrics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61657-5.
Full textGhatak, Abhijit. Deep Learning with R. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5850-0.
Full textSkansi, Sandro. Introduction to Deep Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73004-2.
Full textKetkar, Nikhil. Deep Learning with Python. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2766-4.
Full textAmaratunga, Thimira. Deep Learning on Windows. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6431-7.
Full textChen, Yen-Wei, and Lakhmi C. Jain, eds. Deep Learning in Healthcare. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32606-7.
Full textTanaka, Akinori, Akio Tomiya, and Koji Hashimoto. Deep Learning and Physics. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6108-9.
Full textBruno, Michael A. Error and Uncertainty in Diagnostic Radiology. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190665395.001.0001.
Full textTutino, Stefania. Uncertainty in Post-Reformation Catholicism. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190694098.001.0001.
Full textWalker, Warren E., Steven W. Popper, and Pieter J T M Bloemen. Decision Making Under Deep Uncertainty. Saint Philip Street Press, 2020.
Find full textWalker, Warren E., Steven W. Popper, and Pieter J T M Bloemen. Decision Making Under Deep Uncertainty. Saint Philip Street Press, 2020.
Find full textWang, Xizhao, and Junhai Zhai. Learning with Uncertainty. Taylor & Francis Group, 2016.
Find full textWang, Xizhao, and Junhai Zhai. Learning with Uncertainty. Taylor & Francis Group, 2016.
Find full textWang, Xizhao, and Junhai Zhai. Learning with Uncertainty. Taylor & Francis Group, 2016.
Find full textWang, Xizhao, and Junhai Zhai. Learning with Uncertainty. Taylor & Francis Group, 2016.
Find full text