Journal articles on the topic 'Deep learning with uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep learning with uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Wei, Xiaodong Yue, Yufei Chen, and Thierry Denoeux. "Trusted Multi-View Deep Learning with Opinion Aggregation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7585–93. http://dx.doi.org/10.1609/aaai.v36i7.20724.
Full textOh, Dongpin, and Bonggun Shin. "Improving Evidential Deep Learning via Multi-Task Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7895–903. http://dx.doi.org/10.1609/aaai.v36i7.20759.
Full textBajorath, Jürgen. "Understanding uncertainty in deep learning builds confidence." Artificial Intelligence in the Life Sciences 2 (December 2022): 100033. http://dx.doi.org/10.1016/j.ailsci.2022.100033.
Full textvan den Berg, Cornelis A. T., and Ettore F. Meliadò. "Uncertainty Assessment for Deep Learning Radiotherapy Applications." Seminars in Radiation Oncology 32, no. 4 (October 2022): 304–18. http://dx.doi.org/10.1016/j.semradonc.2022.06.001.
Full textZheng, Rui, Shulin Zhang, Lei Liu, Yuhao Luo, and Mingzhai Sun. "Uncertainty in Bayesian deep label distribution learning." Applied Soft Computing 101 (March 2021): 107046. http://dx.doi.org/10.1016/j.asoc.2020.107046.
Full textLockwood, Owen, and Mei Si. "A Review of Uncertainty for Deep Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 18, no. 1 (October 11, 2022): 155–62. http://dx.doi.org/10.1609/aiide.v18i1.21959.
Full textKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (October 3, 2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Full textCaldeira, João, and Brian Nord. "Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms." Machine Learning: Science and Technology 2, no. 1 (December 4, 2020): 015002. http://dx.doi.org/10.1088/2632-2153/aba6f3.
Full textDa Silva, Felipe Leno, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. "Uncertainty-Aware Action Advising for Deep Reinforcement Learning Agents." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5792–99. http://dx.doi.org/10.1609/aaai.v34i04.6036.
Full textKawano, Yasufumi, Yoshiki Nota, Rinpei Mochizuki, and Yoshimitsu Aoki. "Non-Deep Active Learning for Deep Neural Networks." Sensors 22, no. 14 (July 13, 2022): 5244. http://dx.doi.org/10.3390/s22145244.
Full textGou, Xiaohong, and Xuenong He. "Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage." Journal of Healthcare Engineering 2021 (November 22, 2021): 1–10. http://dx.doi.org/10.1155/2021/9639419.
Full textLoftus, Tyler J., Benjamin Shickel, Matthew M. Ruppert, Jeremy A. Balch, Tezcan Ozrazgat-Baslanti, Patrick J. Tighe, Philip A. Efron, et al. "Uncertainty-aware deep learning in healthcare: A scoping review." PLOS Digital Health 1, no. 8 (August 10, 2022): e0000085. http://dx.doi.org/10.1371/journal.pdig.0000085.
Full textXu, Lei, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen. "Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning." Hydrology and Earth System Sciences 26, no. 11 (June 14, 2022): 2923–38. http://dx.doi.org/10.5194/hess-26-2923-2022.
Full textPham, Nam, Sergey Fomel, and Dallas Dunlap. "Automatic channel detection using deep learning." Interpretation 7, no. 3 (August 1, 2019): SE43—SE50. http://dx.doi.org/10.1190/int-2018-0202.1.
Full textKabir, H. M. Dipu, Sadia Khanam, Fahime Khozeimeh, Abbas Khosravi, Subrota Kumar Mondal, Saeid Nahavandi, and U. Rajendra Acharya. "Aleatory-aware deep uncertainty quantification for transfer learning." Computers in Biology and Medicine 143 (April 2022): 105246. http://dx.doi.org/10.1016/j.compbiomed.2022.105246.
Full textMorocho-Cayamcela, Manuel Eugenio, Martin Maier, and Wansu Lim. "Breaking Wireless Propagation Environmental Uncertainty With Deep Learning." IEEE Transactions on Wireless Communications 19, no. 8 (August 2020): 5075–87. http://dx.doi.org/10.1109/twc.2020.2986202.
Full textGude, Vinayaka, Steven Corns, and Suzanna Long. "Flood Prediction and Uncertainty Estimation Using Deep Learning." Water 12, no. 3 (March 21, 2020): 884. http://dx.doi.org/10.3390/w12030884.
Full textPei, Zhihao, Angela M. Rojas-Arevalo, Fjalar J. de Haan, Nir Lipovetzky, and Enayat A. Moallemi. "Reinforcement learning for decision-making under deep uncertainty." Journal of Environmental Management 359 (May 2024): 120968. http://dx.doi.org/10.1016/j.jenvman.2024.120968.
Full textPeluso, Alina, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, et al. "Deep learning uncertainty quantification for clinical text classification." Journal of Biomedical Informatics 149 (January 2024): 104576. http://dx.doi.org/10.1016/j.jbi.2023.104576.
Full textMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor. "Uncertainty-aware autonomous sensing with deep reinforcement learning." Future Generation Computer Systems 156 (July 2024): 242–53. http://dx.doi.org/10.1016/j.future.2024.03.021.
Full textYoon, Young-In, and Hye-Young Jeong. "A Comparison of Uncertainty Quantification of Deep Learning models for Time Series." Korean Data Analysis Society 26, no. 1 (February 29, 2024): 163–74. http://dx.doi.org/10.37727/jkdas.2024.26.1.163.
Full textBhatia, Abhinav, Pradeep Varakantham, and Akshat Kumar. "Resource Constrained Deep Reinforcement Learning." Proceedings of the International Conference on Automated Planning and Scheduling 29 (May 25, 2021): 610–20. http://dx.doi.org/10.1609/icaps.v29i1.3528.
Full textSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Full textSilva, Felipe Leno Da, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. "Providing Uncertainty-Based Advice for Deep Reinforcement Learning Agents (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (April 3, 2020): 13913–14. http://dx.doi.org/10.1609/aaai.v34i10.7229.
Full textWang, Chun, and Jiquan Ma. "Uncertainty-Supervised Super-Resolution Deep Learning Network in Diffusion MRI." Highlights in Science, Engineering and Technology 45 (April 18, 2023): 7–10. http://dx.doi.org/10.54097/hset.v45i.7288.
Full textFeng, Zhiyuan, Kai Qi, Bin Shi, Hao Mei, Qinghua Zheng, and Hua Wei. "Deep evidential learning in diffusion convolutional recurrent neural network." Electronic Research Archive 31, no. 4 (2023): 2252–64. http://dx.doi.org/10.3934/era.2023115.
Full textChaudhary, Priyanka, João P. Leitão, Tabea Donauer, Stefano D’Aronco, Nathanaël Perraudin, Guillaume Obozinski, Fernando Perez-Cruz, Konrad Schindler, Jan Dirk Wegner, and Stefania Russo. "Flood Uncertainty Estimation Using Deep Ensembles." Water 14, no. 19 (September 22, 2022): 2980. http://dx.doi.org/10.3390/w14192980.
Full textLi, Xingjian, Pengkun Yang, Yangcheng Gu, Xueying Zhan, Tianyang Wang, Min Xu, and Chengzhong Xu. "Deep Active Learning with Noise Stability." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (March 24, 2024): 13655–63. http://dx.doi.org/10.1609/aaai.v38i12.29270.
Full textHong, Ming, Jianzhuang Liu, Cuihua Li, and Yanyun Qu. "Uncertainty-Driven Dehazing Network." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 906–13. http://dx.doi.org/10.1609/aaai.v36i1.19973.
Full textKompa, Benjamin, Jasper Snoek, and Andrew L. Beam. "Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures." Entropy 23, no. 12 (November 30, 2021): 1608. http://dx.doi.org/10.3390/e23121608.
Full textYu, Yang, Danruo Deng, Furui Liu, Qi Dou, Yueming Jin, Guangyong Chen, and Pheng Ann Heng. "ANEDL: Adaptive Negative Evidential Deep Learning for Open-Set Semi-supervised Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (March 24, 2024): 16587–95. http://dx.doi.org/10.1609/aaai.v38i15.29597.
Full textKlotz, Daniel, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing. "Uncertainty estimation with deep learning for rainfall–runoff modeling." Hydrology and Earth System Sciences 26, no. 6 (March 31, 2022): 1673–93. http://dx.doi.org/10.5194/hess-26-1673-2022.
Full textLv, Xiaoming, Fajie Duan, Jia-Jia Jiang, Xiao Fu, and Lin Gan. "Deep Active Learning for Surface Defect Detection." Sensors 20, no. 6 (March 16, 2020): 1650. http://dx.doi.org/10.3390/s20061650.
Full textBi, Wei, Wenhua Chen, and Jun Pan. "Multidisciplinary Reliability Design Considering Hybrid Uncertainty Incorporating Deep Learning." Wireless Communications and Mobile Computing 2022 (November 18, 2022): 1–11. http://dx.doi.org/10.1155/2022/5846684.
Full textCifci, Mehmet Akif. "A Deep Learning-Based Framework for Uncertainty Quantification in Medical Imaging Using the DropWeak Technique: An Empirical Study with Baresnet." Diagnostics 13, no. 4 (February 20, 2023): 800. http://dx.doi.org/10.3390/diagnostics13040800.
Full textKim, Mingyu, and Donghyun Lee. "Why Uncertainty in Deep Learning for Traffic Flow Prediction Is Needed." Sustainability 15, no. 23 (November 22, 2023): 16204. http://dx.doi.org/10.3390/su152316204.
Full textMaged, Ahmed, and Min Xie. "Uncertainty utilization in fault detection using Bayesian deep learning." Journal of Manufacturing Systems 64 (July 2022): 316–29. http://dx.doi.org/10.1016/j.jmsy.2022.07.002.
Full textFeng, Shijie, Chao Zuo, Yan Hu, Yixuan Li, and Qian Chen. "Deep-learning-based fringe-pattern analysis with uncertainty estimation." Optica 8, no. 12 (November 23, 2021): 1507. http://dx.doi.org/10.1364/optica.434311.
Full textLoquercio, Antonio, Mattia Segu, and Davide Scaramuzza. "A General Framework for Uncertainty Estimation in Deep Learning." IEEE Robotics and Automation Letters 5, no. 2 (April 2020): 3153–60. http://dx.doi.org/10.1109/lra.2020.2974682.
Full textQin, Yu, Zhiwen Liu, Chenghao Liu, Yuxing Li, Xiangzhu Zeng, and Chuyang Ye. "Super-Resolved q-Space deep learning with uncertainty quantification." Medical Image Analysis 67 (January 2021): 101885. http://dx.doi.org/10.1016/j.media.2020.101885.
Full textPeng, Weiwen, Zhi-Sheng Ye, and Nan Chen. "Bayesian Deep-Learning-Based Health Prognostics Toward Prognostics Uncertainty." IEEE Transactions on Industrial Electronics 67, no. 3 (March 2020): 2283–93. http://dx.doi.org/10.1109/tie.2019.2907440.
Full textXue, Yujia, Shiyi Cheng, Yunzhe Li, and Lei Tian. "Reliable deep-learning-based phase imaging with uncertainty quantification." Optica 6, no. 5 (May 7, 2019): 618. http://dx.doi.org/10.1364/optica.6.000618.
Full textAbdullah, Abdullah A., Masoud M. Hassan, and Yaseen T. Mustafa. "Uncertainty Quantification for MLP-Mixer Using Bayesian Deep Learning." Applied Sciences 13, no. 7 (April 3, 2023): 4547. http://dx.doi.org/10.3390/app13074547.
Full textHabibpour, Maryam, Hassan Gharoun, Mohammadreza Mehdipour, AmirReza Tajally, Hamzeh Asgharnezhad, Afshar Shamsi, Abbas Khosravi, and Saeid Nahavandi. "Uncertainty-aware credit card fraud detection using deep learning." Engineering Applications of Artificial Intelligence 123 (August 2023): 106248. http://dx.doi.org/10.1016/j.engappai.2023.106248.
Full textDas, Neha, Jonas Umlauft, Armin Lederer, Alexandre Capone, Thomas Beckers, and Sandra Hirche. "Deep Learning based Uncertainty Decomposition for Real-time Control." IFAC-PapersOnLine 56, no. 2 (2023): 847–53. http://dx.doi.org/10.1016/j.ifacol.2023.10.1671.
Full textKoh, D., A. Mishra, and K. Terao. "Deep neural network uncertainty quantification for LArTPC reconstruction." Journal of Instrumentation 18, no. 12 (December 1, 2023): P12013. http://dx.doi.org/10.1088/1748-0221/18/12/p12013.
Full textMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor. "Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting." Sensors 21, no. 23 (November 30, 2021): 8009. http://dx.doi.org/10.3390/s21238009.
Full textAldhahi, Waleed, and Sanghoon Sull. "Uncertain-CAM: Uncertainty-Based Ensemble Machine Voting for Improved COVID-19 CXR Classification and Explainability." Diagnostics 13, no. 3 (January 26, 2023): 441. http://dx.doi.org/10.3390/diagnostics13030441.
Full textJi, Ying, Jianhui Wang, Jiacan Xu, Xiaoke Fang, and Huaguang Zhang. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning." Energies 12, no. 12 (June 15, 2019): 2291. http://dx.doi.org/10.3390/en12122291.
Full textJi, Ying, Jianhui Wang, Jiacan Xu, and Donglin Li. "Data-Driven Online Energy Scheduling of a Microgrid Based on Deep Reinforcement Learning." Energies 14, no. 8 (April 10, 2021): 2120. http://dx.doi.org/10.3390/en14082120.
Full text